Generic Kepler Actors— USER MANUAL

(Please contact the author(s) for the usage of the domain specific actors when necessary.)
The Kepler actorsfolder isfound under the “ Actor Library”. Currently, thereis afolder for each

individual or project effort. Below is a description of the generic actors categorized by the folder
names.

The SPA Folder Actors

BrowserUl: Given afile path or URL including a CGl-based form, this actor can be used for
injecting user control and input. It can aso be used for efficient output of legacy applications
anywhere in aworkflow viathe user’s local web browser. The BrowserUI actor uses the default
browser in the user’s computer.

Browserl| sl Cutput

narme

1|IaDr1_IRI_’+ BRDWSER Evalua

Figurel. The GUI for the BrowserUl actor

When not configured, as aresult of the CGI form execution, the actor just outputs the (name,
value) pairsin XML format and as separate arrays.

The actor can be configured using the configuration interface to allow for automatic CGI form
generation. The configuration is made through atext file that imply specifies the name and type
of the output ports that the user wants to configure the actor for. Please refer to
BrowserUIConfigureTest.xml under $K EPL ER/workflows/test for more information on the
configuration of this actor.

Command Line: Given acommand string and optionally one or few of arguments, switches,
input and output files, the CommandLine actor generates a command and executes it using the
java Runtime class.

) ~ CommandLine
aruments I oulfileHandle
oufput
infila Har‘ld|HBIi!CUdB

Figure2. The GUI for the CommandLine actor
Asillugtrated in Figurel, the CommandLine actor has the following ports:

arguments: --Input-- Arguments are independent values or references passed to a function,
command or program, by the caller. The arguments can be basic string constants or
can be passed into the port from other actors. They can involve the command
switches that are attached to the argument values. They are listed in the order they
were attached to the port when the command is being generated.

infileHandle: --Input-- This port isused if the file accepts an input file instead of alist of
arguments.

trigger: --Input-- Thisisan optiona port that is useful if the execution of a command should be
after the successful execution of another actor. The output of the previous actor should be
linked to the trigger port of the depending actor for scheduling purposes. It can be hidden
if not used by turning off the hasTrigger radio button by selecting the configure box.

outfileHandle: --Output-- An outpuit file can be used to store the results of the execution ibstead
of the standard output. The handle is the full-path of the output file that is
browsed/given by the output file parameter that can be changed/updated by
double-clicking on the actor or selecting “configure” right-click context menu.

output: --Output-- The standard output of the command. Broadcasts only if no outfile is selected.

exitcode: --Output-- A true/false output that showsif the command was executed successfully.

All the ports of the CommandLine actor are optional depending on the usage of the actor.

it parameters for Commaname x
p
o commar |qu:~c-.u I'yps wiur Commard Fera
i | Erowae |
cudpuilineBryLins i
b Trigges. r
[conme] add | Remove | RestoeDefaks | Preferences | o | cancel |

Figure3. The parameters for the CommandLine actor

The parameters of the CommandLine actor (see Figure2) are also used for generating the
command as well as formatting the output and available ports.

Command: The main part of the command that al the arguments and infile are attached to. The
full path to the command should be specified even if the command isin the PATH
environment variable.

OutputFile: Used for browsing/typing the path of the output file that will be used instead
of the standard output. The path of the selected file will be output from the
‘outfileHandle' output port of the actor.

outputLineByLine: Formats the standard output of the actor if no outfile is selected. When
selected, the ‘output’ output port will broadcast one token for each line
in the standard outpuit.

hasTrigger: Activatesthe ‘trigger’ input port of the actor when selected.

In the current version of the actor, the following command types are supported:

command (e.g. "C:/Program Files/Internet Explorer/IEXPLORE.EXE")

command < infile > outfile (e.g. "$HOME/myprog < inputFile.in > outputFile.out")
command > outfile (e.g. "C:/cygwinvbin/dir.exe > dirTemp.txt")

command < infile (e.g. "/usr/local /bin/myprog < inputFile.txt")

command [argl..argn] > outfile (e.g. “C:/cygwin/bin/perl.exe c:/project/kepl er/test/workflows/example.pl >
c:/project/kepler/test/workflows/example.out";)
command [argl..argn] (e.g. "/usr/bin/perl $SHOM E/perl_code/example.pl)

This actor will be extended to alow for the following commands:
command [argl..argn] < infile > outfile
commandl | command 2 (This type of commands need to be able to give the output of all the commands

instead of only the last one. Currently, only the output of the last command is
broadcasted. A parameter to switch this on and off will be added.)

Email: Given the configuration parameters for the host SMTP server, to and from addressed, the
Email actor sendsthe datathat islinked to its‘messageBody’ multi-port (see Figured) asan
output notification email from Kepler.

Emall
messageBody

Figured. The GUI for the Email actor

An example usage of the Email actor can be found at * $K EPL ER/workflows/test/email Test.xml’.
FileFetcher: Given a Globus authentication certificate and a“;’ separated list (see Figure5) of

the full paths of files, the FileFetcher actor copies the files to the localhost destination directory
specifed by a configuration parameter.(see Figure6)

FileFetcher

carificata
- fetchedFiles
filesT oSt
FETCHER,

Figureb. The GUI for the FileFetcher actor

The actor outputsa‘;’ delimited list of full-paths of the fetched files. An example application for
this actor can be found at $K EPL ER/workflows/test/FileFetcherTest.xml.

Ldit parameters for FileF etcher ﬁ]

2 somccane T
LestrapoCrador @k I
[comm | add | memove | mestoreDetaks | prefeences | b | caee |

Figure6. The configuration parameters for the FileFetcher

FileStager: Given a Globus authentication certificateand a*;’ separated list (see Figure7) of the
full paths of local files, the GridFTP-based FileStager actor copies the given files from their
localhost paths to a remote destination directory specified by a configuration parameter.(see
FigureB)

FileStager

caificate
- dagedFiles
filesT oPut
STAGER

Figure7. The GUI for the FileStager actor

[parameters Tor FleStager 'EI

3) [l il koot
[stinationDenscioryEatn

[cona | ad | memove | Reste nefas | an«ml Help] Canced]

Figure8. The configuration parameters for the FileStager

GridFTP: Given a Globus-grid proxy certificate, and a set of configuration parameters (see
Figure9), this actor copies afile from any remote Globus source or loca directory, to any remote
Globus host or local directory.

The GridFTP actor can be thought of as a combination of the FileStager and the FileFetcher
actors without having to copy to/from localhost. The actor has a choice-style selection of
available hosts for ease of use. If you would like to set a new source or destination hostname,
please click on the ‘Preferences button on the ‘ Configure’ window for the actor and select
‘Line asthe style for the parameter you would like to edit/type into.

e

) sorcwnsimes .
Pl paih o source fle: mowe |
[stinationHoesirame: janddle sdc mdu :J
Ful i 1o chestination th Eh:m:ul

Figure9. The configuration parameters for the GridFTP-based file transfer actor

The GridFTP actor is under amajor revision. The documentation for the actor will be finalized
after therevision is complete.

Pause: Thisactor isused for putting an expected pause in the workflow specification to alow
for execution to pause until the outputs until that time are reviewed and the workflow is paused.
This actor is mainly useful for long-running jobs.

FigurelO. The GUI for the Pause

RunJobGridClient: Given a Globus-grid proxy certificate, alist of input files passed from
previous actors, and a parameter-specified host and program information, this actor generates the
RSL string for a Globus job. It then executes the job and outputs the resultsand *;’ separated list
of the output file paths. (see Figures 11& 12)

Ru n.J-:I:GrIdCIIF n] i
carificata outputFiles
inputFiIEEMﬁr&llt

Figurell. The GUI for the RunJobGridClient

Ldit parameters for RunlobiGndCs=nt |
\-?) (HotrugHost
PO Pl
Frogeaim Wl sion:

(oL T
Mu=ber ol processoes.

commt | add | memove | RestoceDetaits | Preferences | hop | e |

Figurel2. The configuration parameters for the RunJobGridClient

StringConst: Given astring or a browsed file path, this actor outputs a string just once.
This actor is used mainly in providing constant input to any actor in aworkflow.

WebService: The WebService actor, asindicated in Figurel3, provides the user with aplug-in
interface to execute any WSDL -defined web service. Given a URL for the WSDL of aweb
service and an operation name that isincluded in the WSDL, this actor customizesitself to
execute this web service operation.

WSDL isan XML format for describing network services as a set of endpoints operating on
messages containing either document-oriented or procedure-oriented information. The operations
and messages are described abstractly, and then bound to a concrete network protocol and
message format to define an endpoint. Related concrete endpoints are combined into abstract
endpoints(services). WSDL is extensible to allow description of endpoints and their messages
regardless of what message formats or network protocols are used to communicate. More
information on WSDL and realted standard can be found at: http://www.w3.org/TR/wsdl |

i il iy e P S ELDIDES] el

miethiodh e getsMLEniry

s Trigger: '

Commt | Add | Bemowe | Restorsefmits | Prefeerces | Helo Cancel

Figurel3. The parameters for specialization of the WebService actor

The user can instantiate the generic web service actor by providing the WSDL URL and choosing
the desired web service operation. The actor then automatically specializesitself and adds ports
with the inputs and outputs as described by the WSDL. The so instantiated actor acts as a proxy
for the web service being executed and links to the other actors through its ports.

http://www.w3.org/TR/wsdl

Knplers Grid-mabled scieniific ekl me |

1 Hﬂlﬁr Wi s 10 e KPR Fokeny b sk fiewr wel T can sl from s of da |
; Mo alfi=
-... e v i Gk Db i

el = = Dl s NI I = =i 3
— e rrm Eiln=t wih sgrvicoe of D

=1 S i

i B g
By @ | B | ¢ -

i T u

v = .

! | aonlgiration Jonkde=gliclk and

E—E | Hl configure

. 5 s
Al
(LN T F TP |) =
= saloct WEDL fie or URL
AU NI
St
ol |

g eIt oo s | || A | e |- - | oo |
frean e list

Figureld. An example instantiation of the WebService actor

The WSDL is parsed to get the input, output and binding information. It dynamically generates
ports for each input and output of the operation. This customization happens at the configuration
time of amodel. When the actor isfired at run time, it gets the binding information and creates a
call object to run the model. Using this call object, it invokes the web service and broadcasts the
response to the output ports. Figurel5. below shows two different instantiation of the actor for the

Blast and DDBJ web services provided by the DDBJ. Example applications and test can be found
under the workflows section of your Kepler directory.

WebSendice
WebSendce program
databasge Blast_searchSimple Fasult
quary
-
-
WebSendce *

acceﬂionﬂl DOBJ_getXMLEntry +H&mll

Figurelb. The GUI for the WebService actor

WebServiceHarvester: Kepler provides a Web Service Harvester capability for importing web
services from arepository. This feature was developed for conveniently plugging in awhole set
of (possibly related) services. The web services to import can be searched on aweb page or in a
UDDI repository. Once imported, the web services are saved as actors. These actors can be
reused in different scientific workflows.

The WebService actor is currently under rebuild. More information on the new features and usage
of the actor will be given in this manual after the finalization of this actor. Please refer to the
‘“WebServiceHarvesterTest.xml’ under your $K EPL ER/workflows/test directory for an example
usage of the actor.

XSLTTransformer: Given an xml stream as input, XSLTTransformer isused for for linking
“almost but not quite fitting” output port and input port data formats together. The actor produces
an html stream that can be viewed or queried using the BrowserUI actor. (see Figure)

HSLTActor

zmlin XSLT bt 1Ot

Figurel6. The GUI for XSLTTransformer

The configuration window for the X SLTTransformer actor can be viewed by double-clicking on
the actor or by selecting * Configure’ from the right-click context menu. The window displays a
GUI for browsing the XSL script which will be used to perform the transformation.

x4
:-:) N5 T File Patc | Eravwse |
[comme | fdd | Remove | RestoreDofauts | Prefereoces | Help | caneel |

Figurel?. The configuration of the XSL path parameter

Scientific Workflow Example

The current web service components of the Kepler/SPA system have been used in various
scientific domains, including molecular biology, geosciences, chemistry and ecology.

One example is the “Geological Map Information Integration Workflow” depicted in Figurel8.
Thisworkflow was designed by a geologist to integrate State Geologic Maps using rock and
geologic age ontologies. This model demonstrates the use of distributed processes within a
workflow. The details of this workflow can be reached from the SDSIC presentation at
http://kbi.sdsc.edu/SciDA C-SDM/SDSI C-Integrated. ppt|

http://kbi.sdsc.edu/SciDAC-SDM/SDSIC-Integrated.ppt

Geological Map Information Integration Workflow

SOF Cargeomce

LS T PR oy B

pulfad m berig o Pre pidaaga
Lind i FRITLFEE L alabvions i Dl il et o
FEEis o s Bk s S

Combimpper

| T] Bl AT R B

Mrreassrnpoms

 Frtm et s

Cruamlprempanfros sy g

-

N S rapefEssrclfisracs @ SEru i
—_— - — -I |
- ¥ —_—
- — I L L |
- S nprataeriet] =L TR e g
Nas gt L A --..:.-.f:-.--.;;-n-l =] e
= . 1t L]

-.‘t.u,...,.; S| H_IIE m ! —] JJ
[T T !
T e

RS PR |-I . = i !..‘:-.:I.|Z‘~'..!|-: er compesie acton
= Uy 1 G w1 F] inka .'_:._'--'.'. i -rln.”-.'-'-'-

3

1 e P i
= b el &

e damcdll e o -

[— ¥
Figurel8. Geological Map Information Integration Workflow

The application workflows show how to employ Kepler’'s web service components to compose
distributed scientific workflows. Since web services are often not designed to fit, data
transformati ons between the outputs of previous steps and inputs of subsequent steps are usually
required. For this purpose, specialized data transformation actors (e.g. XSLT, XQuery) have been
implemented. User interaction and workflow output are performed via a browser actor. Please
open to ‘ $K EPL ER/workflows/geo/geonMapHierarchical.xml’ under Kepler to execute this
workflow.

Another example of the Kepler/SPA powered workflows isthe ‘ Promoter Identification
Workflow’ which had been arunning application in different forms for 3 years. It is a production
workflow being used by a biologist to identify likely transcription factor binding sitesin a series
of genes. The process of identifying these sites in a single gene involves a series of tasks, such
that performing the same series manually for each of afew dozen genes can be quite arepetitive
and time-consuming process. The PIW workflow solves that problem by allowing the biologist to
create the workflow once, and run it as many times as he or she desires for any set of different
inputs. The details of this workflow can be reached at hittp://kbi.sdsc.edu/SciDAC-SDM /piw- |
Bpecification.ppt] The workflow can be reached and executed from

‘$K EPL ER/workflows/bio/PIW.xml’ .

Another domain that utilized the Kepler/SPA actors is computational chemistry. The goal of this
effort isto develop workflow tools specific to computational chemistry. Due to the current

http://kbi.sdsc.edu/SciDAC-SDM/piw-specification.ppt
http://kbi.sdsc.edu/SciDAC-SDM/piw-specification.ppt

explosion of the corresponding experimental data, there is a huge need for computational models,
which combine various scientific methods, system sizes, and time scales on one hand and allow
all thisto be done in a high-throughput manner on the other hand. However, researchersin
different fields often face the same problems: Their calculations need considerable computing
power that fortunately nowadays can be provided by supercomputers and/or clusters which,
although may need to be accessed remotely or viaagrid, making connectivity and bookkeeping
pretentious. The application programs applied are typically developed by groups of scientists over
many years, and are highly specific and optimized, but difficult to adapt. Each program nearly
always has its own proprietary input and output formats, often mixing data and keywords, making
communication between different application codes difficult and ineffective.

As afirst example of this type of workflows, we have developed the Nimrod/G-based Gamess
execution workflow. Thisworkflow utilizes the X SLTTransformer and CommandLine
components of Kepler and combines them with some domain-specific knowledge using X SL
scripts. (see Figure 19) Please refer to http://www.sdsc.edu/~altintas/ieee_manish _apr30 04.docffor
more information on this effort.

S0F Deraoicd

Proapessinpufiles

e The Computational Chemistry Prototyping Environment

PrupamEganimani

T
Celine Aroraita, FKim Baldridge, Yohann Pofier, Wibke Sudhalt i University of Zurich
lkay ARinies, Adam Brnbaem, Yang Dwao @ San Dego Supercompuie Caner

Figurel9. Computational Chemistry Prototyping Environment

The generic components of the Kepler project are applicable to all scientific domains aswell as
non-scientific application domains. Figure20 illustrates an example workflow that utilizes the
Globus Grid-based components and their usage.

http://www.sdsc.edu/~altintas/ieee_manish_apr30_04.doc

SDF Direcinr

ExtrCcondsiGamessOul CiilEdv cter Raidis

Globus Prosy FileFauchr b - b 4[{|:|
Hhr:jluiwrl e FETCHERT Giobus Job Fesulls
Files Tl - |
L -
o ETAER

Figure20. An example Grid-based workflow

Please refer to the test workflows under your Kepler directory for interesting test-level
applications utilizing these actors.

The GEON Folder Actors

BinaryFileReader: Readsafile or aURL and outputs its content as a sequence of byte
arrays. The actor extends the Ptolemy FileReader, and can be used to read both ascii and
binary file formats.

BinanfFileReader

oulput
trigger
B - endOfFile

Figure2l. The GUI for the BinaryFileReader actor

Inputs:

trigger:unknown; atrigger to invoke the actor.
Outputs:

Output:[byte]

endOfFile:Boolean
Parameters:

FileOrURL: FileParameter

BinaryFileWriter: Writes a sequence of byte arraysinto afile and eventually outputs the
file path. The actor is capable of writing both ascii and binary contents.

BinaryFileWriter

inputy] - }hlaF‘aih

Figure22. The GUI for the BinaryFileWriter actor

Inputs:
input: [byte]
Outputs:
filePath:string
Parameters:
FileOrURL: FileParameter

Database Query: The DatabaseQuery actor takes as input a database connection
reference, an SQL query, and aresult-type parameter, indication of the query result type;
XML, record or string and the broadcast rate; whether to output the complete result set as
asingle token or as a sequence of tokens, each row individually.

DatabaseQuery

resl b
quary
Figure23. The GUI for the DatabaseQuery actor

Inputs:
dbcon: DBConnectionType
guery: string
Outputs:
result: XML string / record / string
Parameters:
OutputType: choice
outputEachRowSeparately: boolean

OpenDBConnection: A database connection actor. Receives database connection
information from the user, either by selecting a connection link from a database driver
repository, or by providing the database URL, user-name and password. The actor
returns a reference to the database connection (wrapped as a database connection token).
The connection can then be propagated to all actors accessing the specified database.

QOpenDBConnection

Figure24. The GUI for the DatabaseConnect actor

Outputs:
dbcon: DBConnectionType
Parameters:
driverName: string
databaseURL : string
username: string
password: string

SRBConnect: Connectsto the SRB and returns areference to the SRB file system. The
user needs to specify the following connection parameters: srbHost, srbPort,
srbUserName, srbPasswd, srbHomeCollection, srbMdasDomainHome and
srbDefaultResource. The connection reference can then be propagated to all actors
accessing the SRB workspace.

SRBConnect
SRBFileSystem

Figure25. The GUI for the SRBConnect actor

e parameters for sROCowect £
\EJ Aibshins T

srhPort [7
Arbleihan fuszes
wrhPassyet parrsT
bbbt hor reoeseh sy o
wriscls s Comminbiomes: |,m.
arbDelmRe s [prturic-sase

[o] sk | memeve | PestorsDefeats | preterances | el Caresl

Figure26. SRBConnection parameters

SRBDisconnect: Disconnects from the SRB File system once it gets an confirmation
that all actors accessing the specified file system have terminated.

SRBFileSystem SRBDIisconnect
trigger

Figure27. The GUI for the SRBConnect actor

SRBReader: Accepts areference to the SRB files system and afile name, reads the file
from the SRB and outputs its content as a sequence of bytes arrays.

SRBReader

SRBFileSysem
oufput
SHE FileName@
Figure28. The GUI for the SRBReader actor

Inputs:
SRBFileSystem: object
SRBFileName: string
Outputs:
output: [byte]

SRBWriter: Accepts areference to the SRB files system, an SRB remote file name and a
sequence of bytes array as input. The SRBWriter actor writes the byte arrays to the
remote file on the SRB and sends atrigger once it is done.

SRBWriter

SHBFileSysam
in put@m ggar
ghFilaMame
Figure29. The GUI for the SRBWriter actor

Inputs:
SRBFileSystem: object
Input: [byte]
SRBFileName: string
Outputs:
trigger: boolean

	Command: The main part of the command that all the arguments and infile are attached to. The full path to the command should be specified even if the command is in the PATH environment variable.

