Getting Started with Kepler

The Getting Started with Kepler guide is a tutorial style manual for scientists who want to
create and execute scientific workflows.

1.

Table of Contents
INEFOTUCTION ...t bbbttt n b 2
L1 WRhAt IS KEPIEI? .. et 2
1.2. What are Scientific WOrkfloWS?...........ccoouviiiiiiiesee s 3
Basic Components iN KEPIEKoiiiiiiie e 4
2.1, DIrECLOr @N0 ACLOIS.cvieiiieitiiiisiesiee ettt bbb es 4
2.2, POITS e bt a b e b e e et e e e e abeeareeas 5}
2.3, REIALIONS ..ottt 6
2.4, PArAMELEIS. ...ttt ettt b e bt e e b e e nne e nre e reeanreea 6
Downloading and Installing Kepler...........cce oo 7
3.1, SYStEM REQUITEMENTS.coiuiiieiiieitieie ettt sttt 7
3.2, InStalling 0N WINAOWSc.ooiieiiicicciese e 7
3.3, Installing 0N MaCINtOSh........cc.ooiiiii s 8
3.4, INSLAIIING ON LINUX...eiiiiiiiiieieesie et ee e e 8
SEArtING KEPIET ... neas 9
4.1.1. Windows and Macintosh PIatforms............ccocviviiineninenc e, 9
4.1.2. LINUX PIAEFOIM ... 9
KEPIET INTEITACE ... 9
5.1, T TOOIDAI ...ttt bbb 10
5.2. Components and Data ACCESS ATA.........cciurierierierieriesiesiesieeieeesee e ssesieas 11
5.3, Director and ACLOr ICONS.......cciiiiriiieieieiie sttt 12
5.4. The WOrKFIOW CanVas.........ccceiiiiieiierieiiesiese et ee e s e 12
Basic Operations iN KEPIETccviiiiiicc s 13
6.1. Opening an Existing Scientific WOrkflow.............c.ccooiiiiniiiinine 13
6.1.1. Example 1: Opening the Lotka-Volterra Workflowcccccccvenenee. 13
6.2. Running an Existing Scientific WOrkflow.............c.ccooviiiniiiniene 15
6.2.1. Example 2: Running the Lotka-Volterra Workflow with Default
PAAMBLEIS ... 15
6.2.2. Example 3: Running the Lotka-Volterra Workflow with Adjusted
PAAMBTEIS ... e 16

6.3. Editing an Existing Scientific WOrkflow.............ccccoooeiiiiiiiniieee 19
6.3.1. Example 4: Editing/Substituting Analytical Processes in the Image J

WWOTKFIOW ...ttt 20

6.4. Searching iN KePIEr........cvooi it 22
6.4.1. Searching for Available Data.............ccoovriiiiinin e 22
6.4.2. Searching for Available Processing COmponents..........cccccevververveseennnnn, 23

6.5. Creating a Basic Scientific WOrkflowcccoeoiiiniiiiiieeee e 24
6.5.1. Example 1: Creating a “Hello World” Workflow.............cccccoveiveinnnnnne. 24
6.5.2. Example 2: Creating a Simple Workflow Using Local Data................... 25

7. Sample SCientific WOIrKFIOWScccvcouiiieiieecc e 27
7.1. Sample Workflow 1 — Simple Addition..........ccooeiiieiinicieee e 27
7.2. Sample Workflow 2 —Linear RegreSSiONccccoveiueeviereeriesieseesiesiesieesae e 28
7.3. Sample Workflow 3 — Web Services and Data Transformation...................... 33

ST Y o] o T=1 o | TS 39
8.1. Ptolemy Il — The Foundation of Kepler..........ccoieiiniiiiinieneeeeneee e 39
8.2. Technical Overview of KepIer.........cccvueiveiiiieieece e 40
8.3, ACION RETEIEINCE ...t 42

1. Introduction

The Getting Started Guide introduces the main components and functionality of Kepler,
and contains step-by-step instructions for using, modifying, and creating your own
scientific workflows. The Guide provides a brief introduction to the application interface
as well as to application-specific terminology and concepts. Once you are familiar with
the general principles of Kepler, we recommend that you work through a couple of the
sample workflows covered in Section 7 to get a feel for how easy it is to use and modify
workflow components and how components can be combined to form powerful
workflows.

1.1. Whatis Kepler?

Kepler is a software application for the analysis and modeling of scientific data. Kepler
eliminates most of the programming typically required to create executable models by
instead creating visual representations of these processes. These representations, or
“scientific workflows,” visualize the flow of data among discrete analysis and modeling
components (Figure 1).

Kepler allows scientists to create their own executable scientific workflows by simply
dragging and dropping components onto a workflow creation area and connecting the
components to construct a specific data flow, creating a visual model of the analytical
portion of their research. Kepler represents the overall workflow visually so that it is
easy to understand how data flow from one component to another. The resulting
workflow can be saved in a text format, emailed to colleagues, and/or published for
sharing with colleagues worldwide.

Kepler is based on distributed computing technologies (see Appendices, Section 8) that
allow scientists to share their data and workflows with other scientists and to use data and
analytical workflows from others around the world. Kepler also provides access to a
continually expanding, geographically distributed set of data repositories, computing
resources, and workflow libraries (e.g., ecological data from field stations, specimen data
from museum collections, data from the geosciences, etc.).

1.2. What are Scientific Workflows?

Scientific workflows are a flexible tool for accessing scientific data (streaming sensor
data, medical and satellite images, simulation output, observational data, etc.) and
executing complex analysis on the retrieved data.

Each workflow consists of analytical steps that may involve database access and
querying, data analysis and mining, and intensive computations performed on high
performance cluster computers. Each workflow step is represented by an “actor,” a
seemingly simple component that can be dragged and dropped into a workflow (Figure
1) via Kepler’s visual interface. Connected actors (and a few other components that we’ll
discuss in later sections) form a workflow, allowing scientists to inspect and visualize
data on the fly as it is computed, make parameter changes when necessary, and re-run
and reproduce experimental results.*

Workflows may represent theoretical models or observational analyses; they can be
simple and linear, or complex and non-linear. One of the benefits of scientific workflows
is that they are hierarchical, meaning that they can contain sub-workflows to perform
tasks (importing data from R or an image processing application, for example). Kepler
automates low-level data processing tasks so that scientists can focus instead on the
scientific questions of interest.

Scientific workflows provide access to the benefits of today’s grid technologies
(providing access to distributed resources such as data and computational services), while
hiding the underlying complexity of those technologies. Workflows also provide:

documentation of all aspects of an analysis;

visual representation of analytical steps;

ease of testing and debugging;

scalability;

reproducibility of a given project with little effort; and
reuse of part or all of a workflow in a different project.

To date, most scientific workflows have involved a variety of software programs and
sophisticated programming languages. Kepler builds upon the open-source Ptolemy 11
visual modeling system (http://ptolemy.eecs.berkeley.edu/ptolemyll/), creating a single
work environment for scientists. The result is a user-friendly program that allows
scientists to create their own scientific workflows without having to integrate several
different software programs or enlist the assistance of computer programmers.

A number of ready-to-use, components come standard with Kepler, including generic
mathematical, statistical, and signal processing components and components for data
input, manipulation, and display. R- or Matlab-based statistical, image processing, and
GIS functionality are available through direct links to these external packages. You may
also create new components or wrap existing components from other programs (e.g., C
programs) for use within Kepler. For more information about the design of Kepler and
Ptolemy, upon which Kepler is based, see the Appendices.

SDF Director

Constantt

Add ar Subtract

Manitar Value

Figure 1: A simple scientific workflow developed in Kepler

Figure 1 illustrates a simple workflow that adds two numbers and displays the result.
The two components (or “actors™) labeled Constantl and Constant2 produce constant
values that flow to the Add or Subtract actor, which subsequently processes these values.
The Add or Subtract actor calculates the sum of the input values, and then produces that
sum. The Monitor Value actor opens a small window and displays the sum, in this case
the value 5. The SDF Director controls the workflow, specifying when each actor should
perform.

! See Ludascher, B., I. Altintas, C. Berkley, D. Higgins, E. Jaeger-Frank, M. Jones, E. Lee, J. Tao, Y. Zhao.
2005. Scientific Workflow Management and the Kepler System
http://users.sdsc.edu/~ludaesch/Paper/kepler-swf.pdf

2. Basic Components in Kepler

Scientific workflows consist of customizable components—directors, actors, and
parameters—as well as relations and ports, which facilitate communication between the
components.

2.1. Director and Actors

Kepler uses a director/actor metaphor to visually represent the various components of a
workflow. A director controls (or directs) the execution of a workflow. The actors take

their execution instructions from the director. In other words, actors specify what
processing occurs while the director specifies when it occurs.

Every workflow must have a director that controls the execution of the workflow using a
particular model of computation. Each model of computation in Kepler is represented by
its own director. For example, workflow execution can be synchronous, with processing
occurring one component at a time in a designated sequence (SDF Director).
Alternatively, workflow components can execute in parallel, with one or more
components running simultaneously (which might be the case with a PN Director). A
small set of commonly used directors come pre-packaged with Kepler, but more are
available in the underlying Ptolemy Il software that can be accessed as needed. For more
detailed discussion of workflow models of computation, see the Appendices and refer to
Ptolemy Il documentation.

Kepler identifies two kinds of actors: atomic and composite. Atomic actors represent a
single data source or an operation. Composite actors are collections or sets of actors
bundled together to perform more complex operations within a hierarchical, nested
workflow. In essence, an entire workflow can be represented as a composite actor and
included as a component within a higher-level workflow. In more complex hierarchical
workflows, it is possible to have different directors at different levels.

Kepler provides a large set of packaged actors for creating and editing scientific
workflows. Actors can be added to Kepler for an individual’s exclusive use and/or can be
made available to others.

2.2. Ports

Each actor in a workflow can contain one or more ports used to consume or produce data
and communicate with other actors in the workflow. Actors are connected in a workflow
via their ports. The link that represents data flow between one actor port and another
actor port is called a channel. Ports are categorized into three types:

e input port — for data consumed by the actor;
e output port — for data produced by the actor; and
e input/output port — for data both consumed and produced by the actor.

Each port is configured to be either a “singular” or “multiple” port. A single input port
consumes only a single value and can be connected to only a single channel, whereas a
multiple input port can take several inputs and therefore can be connected to multiple
channels. Single ports are designated with a dark triangle; multiple ports use a hollow
triangle.

Workflows can also use external ports and port parameters. See the Ptolemy
documentation for more information.

K] file: /C: fkepler-1.0.0beta1/Add and Subtract.xml
File Edit Wew ‘Workflow Tools Window Help

QaFQIP @S mm>e

Componerts | Data h n
[:] Director
Search SDF Director /
Actors

Q)////
- €9 Components [/
- @ Prajects Constant
- € Disciplines e 3 Add or Subtract o
: LS
& €9 Statistics Constantz i +/ i l ; ‘

> 2
Ports

O resuits faund,
g o
f . £ | ™ i ’

L J

Figure 2: Main window of Kepler with some of the major workflow components highlighted

2.3. Relations

Relations are used to direct the same input or output to more than one other port. Using a
relation, a singular port can output data to several ports, just like a multiple port. For
example, a scientist might wish to direct the output of an operational actor to another
operational actor for further processing, but also to a display actor to visualize the data at
that specific reference point. For an example of a Relation, see Section 7.3.

2.4. Parameters

Parameters are configurable values that can be attached to a workflow or to individual
directors or actors. For example, the Scatterplot actor has parameters that allow the user
to set the scale of the graph on the X and Y axis. The parameters of simulation model
actors can be configured to control certain aspects of the simulation, such as initial
values. Director parameters control the number of workflow iterations and the relevant
criteria for each iteration. For more information about configuring parameters, see
Section 6.2.2

The next sections include information on downloading and installing Kepler, and then
provide an overview of the interface and step-by-step examples of how to open, edit, and
run different scientific workflows.

3. Downloading and Installing Kepler

Kepler is an open-source, cross-platform software program that can run on Windows,
Macintosh, or Linux-based platforms. Kepler can be downloaded from the project
website: http://kepler-project.org.

Although Kepler has been designed to be a stable and full-featured application, the
software is still a research prototype, and Kepler releases are a continual work in
progress. Kepler users are encouraged to suggest improvements for the documentation,
new features, new actors and components, etc., as well as notify the designers of bugs
and other problems. See http://www.kepler-project.org/Wiki.jsp?page=Gettinglnvolved
for more information. Community involvement in the on-going development of Kepler
has proved valuable because it allows the system to quickly adapt to the needs of
practicing scientists. To stay abreast of changes and updates, subscribe to the Kepler
users mailing list at
http://mercury.nceas.ucsb.edu/ecoinformatics/mailman/listinfo/kepler-users.

3.1. System Requirements
To run Kepler your system will need at least:

e 270 MB (283,688,960 bytes) of disk space
e 128 MB of RAM
e Java 1.4 or higher*

To download and install Kepler, follow the instructions for your system. Downloading
the installer files may be time consuming depending upon your connection.

*NOTE: Java 1.4 or higher is required and can be obtained from Sun’s Java
website at: http://jJava.sun.com/j2se/downloads/ or from your system administrator.
Some Kepler installations include Java 1.4 and others do not. Check to see if your
version of Kepler includes Java before downloading it from http://kepler-
project.org/Wiki.jsp?page=Downloads

3.2. Installing on Windows

Two versions of Kepler are available for installation on a Windows machine: one with
Java; and one without Java. If you do not have Java 1.4 (or higher) installed, be sure to

download the Kepler package that includes Java or download and install Java from Sun’s
website. Follow these steps to download and install Kepler for Windows:

1. Click the following link: http://kepler-project.org/Wiki.jsp?page=Downloads and
select the desired Windows version (with or without Java).

2. Save the install file to your computer.

3. Double-click the install file to open the install wizard.

4. Follow the steps presented to complete the Kepler installation process.

Once the installation process is complete, a Kepler application icon will appear on
your desktop (Figure 3).

3.3. Installing on Macintosh

Java is included in all versions of Kepler for Mac OSX and thus can be assumed to be
present. Follow these steps to download and install Kepler for Macintosh systems:

1 Click the following link: http://kepler-project.org/Wiki.jsp?page=Downloads and
select the Mac install file. Save the zipped install file to your computer. Once the
file has been saved to your computer, the zipped install file should automatically
begin to extract itself. (If the extraction does not start automatically, manually
extract the zip file by double-clicking it.)

2 Double-click the install icon that appears on your desktop once the extraction is
complete.

3 Follow the steps presented in the install wizard to complete the Kepler installation
process.

Once the installation process is complete, a Kepler application icon will appear on
your desktop (Figure 3).

b
StorEcHbiEn)
|t =i ==
Figure 3: Kepler shortcut

3.4. Installing on Linux

After making sure you have Java 1.4 or higher installed, follow these steps to download
and install Kepler on Linux:

1. Click the following link: http://kepler-project.org/Wiki.jsp?page=Downloads and
select the Linux install file.
2. Save the zipped install file to your computer.
3. Open a shell window and extract the zipped install file to the desired directory.
Once the Kepler file is unzipped, the installation is complete.

4. Starting Kepler
To start Kepler, follow the instructions for your platform.

4.1.1. Windows and Macintosh Platforms
Double-click the Kepler icon on the desktop (Figure 3).

The main Kepler application window opens (Figure 4). From this window you can
access and run sample and existing scientific workflows and/or create your own custom
scientific workflow. Each time you open an existing workflow or create a new workflow,
a new application window will open. Multiple windows allow you to work on several
workflows simultaneously and compare, copy, and paste components between workflows

4.1.2. Linux Platform

1. Open a shell window.
2. Navigate to the directory into which you installed Kepler.
3. Type sh ./kepler.sh

The main Kepler application window opens (Figure 4). From this window you can
access and run sample and existing scientific workflows and/or create your own custom
scientific workflow. Each time you open an existing workflow or create a new workflow,
a new application window will open. Multiple windows allow you to work on several
workflows simultaneously and compare, copy, and paste components between
workflows.

5. Kepler Interface

Scientific workflows are edited and built in Kepler’s easily navigated, drag-and-drop
interface. The major sections of the Kepler application window are:

e Menu bar — provides access to all Kepler functions.

e Toolbar — provides access to the most commonly used Kepler functions.

e Components and Data Access area — consists of a Components tab and Data tab.
Both tabs contain a search function and display the library of available
components and/or search results.

e Workflow canvas — provides space for displaying and creating workflows.

e Navigation area — displays a portion of a workflow if it is too big to fit into the
Workflow canvas.

K| Unnamed

File Edit Wew ‘Workflow Tools Window Help —-————— Menu bar

eaFalP e mm e Toolbar
Componerts . Data : Data tab Ef\;

~Search—

Component tab

Simulation Model
@ €Y Components .
- & Projects
- €9 Disciplines

- Y Statistics
Workflow canvas

Comaonent and Data Access area / l \

0 resuits found.

«— Navigation area = (¢ |

Figure 4: Empty Kepler window with major sections annotated

5.1. The Toolbar

The Kepler toolbar is designed to contain the most commonly used Kepler functions
(Figure 5).

The main sections of the toolbar include:
e Viewing —zoom in, reset, fit, and zoom out of the model on the Workflow canvas
e Running - run, pause, and stop the model without opening the Run window

e Ports — add single (black) or multi (white) input and output ports to workflows;
add Relations to workflows

10

@R QPO mp e

Viewing: Zoom In, zoom reset, zoom fit & zoom out.

v

Run: Running. pausing & stopping the model

v

L__» Ports: Single input, output and dual ports;
Multiple input, output and dual; relation

Figure 5: Annotated Kepler Toolbar

5.2. Components and Data Access Area

The Components and Data Access area contains a library of workflow components
(under the Components tab) and a search mechanism for locating and using data sets
(under the Data tab). When you first open the application, the Components tab is
displayed.

Components in Kepler are arranged in ontologies. You can browse for components by
clicking through the ontology trees, or use the search function at the top of the
Components tab to find a specific component.

Four component ontologies appear in the Component tab. Each ontology categorizes
components in a unique way. Components may be listed within multiple categories, and
searching for a component may return results from several locations. You may use either
instance of the actor—only its categorization is different. For more information about
searching for components, see section 6.4.2.

Ontology Description

Components Contains a standard library of components,
arranged by function.

Projects Contains a library of project-specific components
(e.g., SEEK or CIPRes)

Disciplines Contains a library of components arranged by
discipline (e.g., Chemistry or Ecology)

Statistics Contains a library of components for use with

statistical analysis.
Table 1: Component Ontologies in Kepler

Click the Data tab to reveal the Data Access area. From here, you can easily search the
EcoGrid for remotely hosted data sets. For more information about searching for data, see
section 6.4.1.

11

5.3. Director and Actor Icons

In Kepler, a single class of icons represents directors. Actors are divided into functional
categories, with each category assigned to visually related icons as listed below. For a
complete list of actors, including their specific icons and a description of each actor, see
Appendix 8.3, “Actor Reference.”

Name Description

Director Stand-alone component that directs the
other components (the actors) in their
execution

Atomic actor A connected component that can be a
single data source or an operation upon
data

Display actor A connected component that outputs the
workflow in text or graphical format

Model actor A connected component that creates and
executes an analytic rule set

Composite actor Collections or sets of actors bundled
together to perform more complex
operations within a hierarchical, nested
workflow

BEERO

Data Data sets located from the EcoGrid or
local computer containing either data or
metadata or both.

Table 2: The major Kepler icons

5.4. The Workflow Canvas

Scientific workflows are opened, created, and modified on the Workflow canvas.
Components are easily dragged and dropped from the Component and Data Access area
to the desired canvas location. Each component is represented by an icon (see Section 5.3
for examples), which makes identifying the components simple. Connections between the
components (i.e., channels) are also represented visually so that the flow of data and
processing is clear.

12

Each time you open an existing workflow or create a new workflow, a new application
window will open. Multiple windows allow you to work on several workflows
simultaneously and compare, copy, and paste components between Workflow canvases.

6. Basic Operations in Kepler

This section will cover the basic operations in Kepler: opening and running an existing
workflow, and some of the basic functions needed to edit, design, and create your own
workflows.

6.1. Opening an Existing Scientific Workflow

This section will walk you through the steps of opening a workflow in Kepler. We begin
the generic steps and then specify the steps to open a pre-existing workflow in Kepler.
To open any existing workflow:

1. From the Menu bar, select File, then Open File. A standard file dialog box will
appear.

2. If the file dialog box does not open to the “/kepler” directory (the directory name
will reflect the application version, e.g., kepler-1.0.0betal), then navigate to the
“/kepler” directory, then to /demos/getting-started.

3. Double-click a workflow file to open it. The workflow will appear in the
Workflow canvas of the application window.

NOTE: In order to run properly, some workflows require online access (to access
remote data, for example).

6.1.1. Example 1: Opening the Lotka-Volterra Workflow

In this example we will open a specific workflow: the classic predator pray model, the
Lotka-Volterra workflow. To open this workflow:

1. From the Menu bar, select File, then Open File. A standard file dialog box will
appear (Figure 6).

2. Navigate to the “/kepler/demos/getting-started/” directory and locate the file
named “02-LotkaVolterraPredatorPrey.xml”.

13

IEI Select a model file.

File Edit Wiew ‘Warkflow Too)
Open File, ., Chrl+0
Open URL,..

Import Archive (KAR)

Mew WarkFlow »
Save 5
Save fs..,

Prirk. .. Chrl+P
Close Chrl+w
Exit

Look in:

My Recent
Docutrerts

D:E:k'tc-p
Iy D‘o-c;::errts
8
My Computer
<
Iy Metwark
Places

|l|_ﬂ getting-started

[-Simpleddtion
02-LotkaolterraPredatorPrey
03-Imagelisplay
04-Hellchforid
03-LinearRegression

OE6-WehServicesAndDataTransformation

File name:

. 02-Lotka'olterraPredatorPresy xml

Files of type:

|.me, anoral, KWL, MOML and Maobdl files

[vl Cancel

Figure 6: Graphic showing navigation to Lotka-Volterra workflow. The workflow is in the
“/kepler/demos/getting-started/” directory.

3. Double-click the “02-LotkaVolterraPredatorPrey.xml” file. The Lotka-Volterra
workflow appears in the Workflow canvas of the application window (Figure 7).

K file: /C: fkepler 2006071 8/demos/getting-starte d/02-LotkaVolterraPredatorPrey. xml

Lok

Eile Edit View ‘Workflow Tools Window Help

QaRadPNO» mmihe

Search

@I Components
&1 Y Projects
CE! £ Disciplines
- @ Stakistics

4
)]
CT Director
: er2
’ Search ” Reset] Jimicdeiotter ®a: 01
eb:01
XYPlotter ed:0.1
L . =
Ldni/dt i G
"l -a*ni*n2 el lid oy
Ldn2/dt nsarats 2
:[=d*n2 +b*n1*n2 MISgraia 1
* J
[na]
|i| | 111} [_)J

Figure 7: The Lotka-Volterra workflow in the Kepler interface.

14

6.2. Running an Existing Scientific Workflow

This section will walk through the steps of running an existing workflow.

To run any existing scientific workflow:

1. Open the desired workflow.

2. From the Toolbar, select the Run button.

3. The workflow will execute and produce the specified output.

OR

=

Open the desired workflow.

2. From the Menu bar, select Workflow, then Runtime Window. A Run window
will appear. If the workflow has parameters, they will appear here.

Adjust the parameters as needed, and then click the Go button.

4. The workflow will execute and produce the specified output. During workflow
execution, you may select the Pause, Resume, or Stop buttons.

w

NOTE: The ability to pause, resume, or stop the workflow execution is not available
when executing a workflow via the Run button. Additionally, the option to adjust
workflow parameters, if they exist, is not available via the Run button. The
workflow will execute with the default parameter values.

6.2.1. Example 2: Running the Lotka-Volterra Workflow with Default
Parameters

The Lotka-Volterra model uses the continuous time domain in Kepler to solve two
coupled differential equations: one that models the predator population; and one that
models the prey population. The results are plotted as they are calculated, showing both
populations change and a phase diagram of the dynamics. For more information about the
model, see Section 6.2.2. To run the Lotka-Volterra workflow:

1. Open the workflow file named “02-LotkaVolterraPredatorPrey” from the
“/kepler/demos/getting-started/” directory.

2. From the Menu bar, select Run.

3. The Lotka-Volterra workflow will execute with the default parameters and
produce two graphs. The graph labeled TimedPlotter depicts the interaction of
predator and prey over time (i.e., the cyclical changes of the predator and prey
populations over time predicted by the model). The graph labeled XY Plotter
depicts a phase portrait or the population cycle around the equilibrium (i.e., the
predator population against the prey population). Together these graphs show
how the predator and prey populations are linked: as prey increases, the number
of predators increase. (Figure 8)

15

[K .02-LotkaVolterraPredatorPrey. Time dPlotter g@
File Tools Special Help
=i [l 22
TimedPlotter DDE@
40 7
3ET
or
25
20
18 \
o0 7
sF 4
ol uJ|.J l 4
00 01 02 03 04 05 06 07 08 08 1.0 [mf] <
it
=)
XYPlotter 51w |]
40
3br
aonr
25T
aor
18T
o)
1} 1 2 3 4 5} [} 7 8 9 10

Figure 8: Graphics from running the Lotka-Volterra workflow

6.2.2. Example 3: Running the Lotka-Volterra Workflow with
Adjusted Parameters

To better illustrate the effect of parameters on a workflow, we must first provide some
background about the Lotka-Volterra workflow.

CT Director or2
TimedPlotter
ea 01
eb:0.1
XYPlotter ed: 0.1
Integraten1
~dn1/dt -
lw’. J -
Integrate n2
dn2idt

-J»]

Figure 9: Graphic of Lotka-Volterra workflow

16

The Lotka-Volterra model was developed independently by Lotka (1925) and Volterra
(1926) and is made up of two differential equations. One describes how the prey
population changes (dnl/dt = r*nl - a*n1*n2), and the second equation describes how the
predator population changes (dn2/dt = -d*n2 + b*n1*n2).

The Lotka-Volterra model is based on certain assumptions:

the prey has unlimited resources;

the prey's only threat is the predator;

the predator is a specialist (i.e., the predator's only food supply is the prey); and
the predator's growth depends on the prey it catches.

The Lotka-Volterra model as represented in Kepler as a scientific workflow contains:
e six actors - two plotters, two equations, and two integral functions;
e one director; and
e four workflow parameters.

NOTE: The director has several configurable parameters as do the two plotter
actors.

The critical assumptions above provide the basis for the workflow parameters. The
workflow parameters and their defaults are as follows:

Parameter | Default | Description

Value
r 2 the intrinsic rate of growth of prey in the absence
of predation
a 0.1 capture efficiency of a predator or death rate of
prey due to predation
b 0.1 proportion of consumed prey biomass converted

into predator biomass (efficiency of turning prey
into new predators)

d 0.1 death rate of the predator

Table 3: Description of the default parameters for the Lotka-Volterra workflow

In the differential equations used in the workflow, the variable nl represents prey density,
and the variable n2 represents predator density.

When changing parameters in a workflow, the assumptions of the model must be kept in
mind. For example, if creating a Lotka-Volterra model with rabbits as prey and foxes as
predators, the following assumptions can be made with regard to how the rabbit
population changes in response to fox population behavior:

e the rabbit population grows exponentially unless it is controlled by a predator;

e rabbit mortality is determined by fox predation;
o foxes eat rabbits at a rate proportional to the number of encounters;

17

e the fox population growth rate is determined by the number of rabbits they eat and

their efficiency of converting the eaten rabbits into new baby foxes; and
e fox mortality is determined by natural processes.

If you think of each run of the model in terms of rates at which these processes would

occur, then you can think of changing the parameters in terms of percent of change over

time.

To run the Lotka-Volterra workflow with adjusted parameters:

1. Open the workflow file named *“02-LotkaVolterraPredatorPrey” from the
“/kepler/demos/getting-started/” directory

2. From the Menu bar, select Workflow, then Runtime Window. The Runtime
window will appear. Notice there are two sets of parameters — one for the

workflow and one for the director. In this example, you will make adjustments to

both sets of parameters.

3. Adjust the workflow parameters as suggested in Table 4.

Parameter Value Description

r 4 the intrinsic rate of growth of prey in the
absence of predation

a 0.05 capture efficiency of a predator or death rate
of prey due to predation

b 0.03 proportion of consumed prey biomass
converted into predator biomass (efficiency
of turning prey into new predators)

d 0.04 death rate of the predator

Table 4: Description of the suggested parameters for the Lotka-Volterra workflow

4. Adjust the value of the stopTime director parameter to 100.
5. In the Runtime window, click the Go button.

The Lotka-Volterra workflow will execute with the adjusted parameters and produce the
two graphs: 1) the TimedPlotter graph and 2) the XYPlotter graph. Note that with the
changes in the parameters, the relationship between the predator and prey populations are

still linked but the relationship has changed.

18

K| .02-LotkaValterraPredatorPrey. TimedPlotter g@
Fle Tools Specal Help

0" TimedPlotter =1Ll

anf

287

2or

ik

1.0r1

05

oo
I

I I \ | L L |
0.0 0.1 0.2 03 D04 05 OB or 08 08 10

¥t
it XYPlotter 5]

T
aor

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 20
2
®10

Figure 10: Graphs from running the Lotka-Volterra model with adjusted parameters

6.3. Editing an Existing Scientific Workflow

There are two ways to edit an existing scientific workflow:
e substitute a different data set for the current data set; or
e substitute one or more analytical processes in the workflow with other analytical

processes (e.g., substitute a neural network model actor for a probabilistic model
actor).

Before substituting data or processes, you must understand the required inputs and
outputs of the actors involved.

NOTE: To see a high-level description of an actor, right-click that actor to display
a menu; select Documentation, then Display (Figure 11). A dialog box containing a
description of the main function of the actor and its required inputs and output
appears. When finished with this dialog, close the window.

19

Garp Prediction

(‘{ GarpPrediction (org.eccinformatics.seek.garp.GarpPrediction)
ﬁ Configure Actor Chrl+E

K| file:/C: /kepler-1.0.0betal/devidocume. . _neratedJavadocs/GarpPrediction. doc. xml Q@

File Tools Help

Customize Hame GARP is & compter program for predicting species Iocations based on various spatial data sets of
. GarpPrediclio:
Configurs Forts vironment warisbies and GARP is Algorithm fi
avic St is based
Configure Units jdesklopgarpy. The Garpl dicts
Open Actor il pr the input RuleSet (cal Algorithm
r— e actor) and the input = L laye file
= (*.chl). The outputs ar brop file. Ether bitmappes
Configure Semartic Types. Customize il with pragiciodl il el
SaveinLbrary... Remove Customization displayed).
Uplaad to Repositary This is & IMbased actor . recuives the following: Inux: lhgarp. 30 windows: garp.dl, bexpat.di
Convert ko Class MacOSK - currertly nat available for the Mac (34 5.2006)
Bring ta Front Chrl+F
Send to Back Chrl+B
~

Parameters

ruleSetFilengmePerameter This is the file name of the file containing the RuleSet data. It is usually the output of & Garpalgoritm actor
iayersetFilename Parameter This is the file name of the *.c file used to summarize the set of spatial deta fies with erviranmental data for
each pixel

cutoutASCitParameter This isthe file name to be ussd for the output ASCI gric file
uteBMPRarameter This iz the fle name to be used for the autput BMP raster fle
Input Ports
ruleSatFilename This is the file name of the file containing the RulsSet data. I is usualiy the output of & Garpalgorithm actor
layersetFitename This iz the fle name of the %4 fil Lsed to summatize the set of spatial data fles with environmental data for
sach pixel.
Ul SCI This fs the file neme to be used for the outaut ASCI arid file. -
Author. Cha Berkeley, Dan Higains, NCEAS, UC Santa See Also:
Barb
itk # Ho javadocs found
Base class (TupedAtoricActor)
Source code
® Hot used in any detnos

Figure 11: Displaying actor documentation

To edit an existing scientific workflow:

1.
2.
3.

~No

Open the desired workflow.

Identify which workflow component is the target for substitution.

Select the target component (data actor or processing actor) by clicking it. The
selected component will be highlighted in a thick yellow border.

Press the Delete key on your keyboard. The highlighted component will
disappear from the Workflow canvas.

From the Components and Data Access area, drag either an appropriate data file
or processing actor to the Workflow canvas.

Connect the appropriate input and output ports.

Run the workflow.

From the menu bar, select File, then Save (to save over the existing workflow) or
Save As (to save as a new workflow). If using the Save As option, enter a new
workflow name when prompted.

6.3.1. Example 4: Editing/Substituting Analytical Processes in the
Image J Workflow
In this example, we will show how two different actors can perform the same function in

a workflow. We will work with the Image Display workflow found under
“/kepler/demos/getting-started/”, and we will substitute the Browser actor for the ImageJ

actor.

Both actors will display a GARP (Genetic Algorithm for Rule-set Production)

image of a species distribution of the species Mephitis throughout North and South
America. GARP is a genetic algorithm that creates an ecological niche model for a
species that represents the environmental conditions where that species would be able to

20

maintain populations. GARP was originally developed by David Stockwell, at the San
Diego Supercomputer Center. For more information on GARP, see

http://www.lifemapper.org/desktopgarp/.

To edit the Image Display workflow:

1.

2.

Open the 03-Image-Display.xml workflow from the *“/kepler/demos/getting-
started/” directory.

Select the target component, the ImageJ actor in this case. The ImageJ actor will
be highlighted in a thick yellow border, indicating that it is selected (Figure 12).

SDF Director

ImageConvwerter Image.)

Image Filename
q» property"KEPLER"+"/demos/getting-start... M

Figure 12: Image Display workflow showing ImageJ actor highlighted

3.

4.

Press the Delete key on your keyboard. The ImageJ actor will disappear from the
Workflow canvas.

From the Components and Data Access area, drag the BrowserDisplay actor to
the Workflow canvas. You can find the BrowserDisplay actor in the Components
tab under “Components > Data Output > Workflow Output > Textual Output.”
Connect the output port of the ImageConverter actor to the input port of the
BrowserDisplay actor. To connect the ports, left-click and hold on the output port
(black triangle) on the right side of the ImageConverter actor, drag the pointer to
the upper input port on the left side of the BrowserDisplay actor, and then release
the mouse. If the connection is made, you’ll see a thick black line. If the
connection is not completely made, the line will be thin.

Run the workflow.

From the Menu bar, select File, then Save (to save over the existing workflow) or
Save As (to save as a new workflow). If using the Save As option, enter a new
workflow name when prompted.

21

SDF Director

ImageConverter

Image Filename Browser Display
{:} property("KEPLER")+"/demos/getting-start... & IEI

Figure 13: The Image Display workflow with the Browser Display actor substituted for the ImageJ
actor.

NOTE: Sometimes the easiest way to connect actors is to go from the output port to
the input port.

6.4. Searching in Kepler

Kepler provides a searching mechanism to locate data (on the Grid) and analytical
processing components (on the local system). The examples given in this section
describe searching for data and components in Kepler.

6.4.1. Searching for Available Data

Via its search capabilities, Kepler provides access to data from the EcoGrid. EcoGrid
resources are stored in the KNB Metacat http://knb.ecoinformatics.org, the KU Digir
http://www.specifysoftware.org/Informatics/informaticsdigir/, and the GEON
http://www.geongrid.org/ databases. To search for data on the EcoGrid through Kepler:

1. In the Components and Data Access area, select the Data tab (Figure 14).

2. Type in the desired search string (e.g., Datos Meteorologicos). Make sure that the
search string is spelled correctly.

3. Click the Search button. The search may take several moments. When the search
is complete, a list of search results (i.e., Data actors) will be displayed in the
Components and Data Access area.

4. To use one or more data actors in a workflow, simply drag the desired actors to
the Workflow canvas.

Information about a Data actor can be revealed in two ways: on the Workflow canvas,
roll over the Data actor’s data output ports to reveal a tool tip containing the name
and type of data; Right-click the Data actor and select Get Metadata to open a
window containing more information about the data set.

22

K| file:/C: ke pler-1.0.0betal/demos/getting-starte d/03-ImageDisplay. xml
File Edit Wiew ‘Workflow Tools Window Help

QaHatIP @ mmi e

Comporents | Data W

Search

Datos hMeteorologicos

Search ” Reset l

Diatos Meteorologicos b

Datos orologicos

Figure 14: Searching for and locating Datos Meteorologicos

NOTE: To configure the search, click the Sources button. Select the sources to be
searched and the type of documents to be retrieved.

6.4.2. Searching for Available Processing Components

Kepler comes standard with over 200 workflow components and the ability to modify
and create your own. You can create an innumerable number of workflows with a variety
of analytic functions. The default set of Kepler processing components is displayed
under the Components tab in the Components and Data Access area. Components are
organized by function (e.g., “Director” or “Filter Actor”). To search for processing
components:

1. In the Components and Data Access area to the left of the Workflow canvas,
select the Components tab.

2. Type in the desired search string (e.g., “File Fetcher”).

3. Click the Search button. When the search is complete, the search results are
displayed in the Components and Data Access area. The search results replace the
default list of components. You may notice multiple instances of the same
component (Because components are arranged in ontologies, the same component
may appear in multiple places in the search results.)

4. To use one or more processing components in a workflow, simply drag the
desired components to the Workflow canvas.

5. To clear the search results and re-display the list of default components, click the
Reset button.

23

NOTE: If you know which component you want to use and its location in the
Component library, you can navigate to it directly, and then drag it to the Workflow
canvas.

6.5. Creating a Basic Scientific Workflow

One of the strengths of Kepler is the ability to design, create, and save your own
executable workflows. The general steps in creating a workflow are as follows:

Create a conceptual (paper or other medium) model of your scientific workflow.
Open the Kepler application.

Map the data and actor components available in Kepler to your conceptual model.
Select a director for your workflow and drag it to the Workflow canvas.

Drag the desired workflow components to the Workflow canvas.

Connect the workflow components.

Save the workflow.

NogakowdnpE

The examples in this section illustrate how to begin to create your own workflows. The
first example is the classic “Hello World” workflow that demonstrates how easy it is to
create a functioning workflow in Kepler. The second example is more practical and
shows how to use your desktop data in a workflow.

6.5.1. Example 1: Creating a “Hello World” Workflow

To create the “Hello World” workflow, begin by thinking about the type of data used
(e.g., text or string data); the type of output desired (e.g., textual or image display); and
the type of director needed to execute this model (e.g., synchronous or parallel) The
“Hello World” workflow requires a constant actor, a text display actor, and a SDF
director (in a SDF director, the data will flow through the actors based on the order in the
workflow, and the workflow will run continuously). .

1. Open Kepler. A blank Workflow canvas will open.

2. Inthe Components and Data Access area, select the Components tab, then
navigate to the “/Components/Director/” directory.

3. Drag the SDF Director to the top of the Workflow canvas.

4. Inthe Components tab, search for “Constant” and select the Constant actor.

5. Drag the Constant actor onto the Workflow canvas and place it a little below the
SDF Director.

6. Configure the Constant actor by right-clicking the actor and selecting Configure
Actor from the menu. (Figure 15)

24

Constant

Configure Actor ChrlH+E

Customize Mame

Configure Parts

Canfigure Units Edit parameters for Constant
Open Actor ChrHL

i 1 "
Documentation 4 Q walue: "Hello World'

Configure Semantic Types... class: ptolemy actor b Const

Save in Library... sermarticType0dl: urn:1sid: localhost:onto: 1: 1#Constantictor
Upload to Repository semarticTypel1: urn: 1sid: localhost: onto: 2: 1#Constant
Convert ta Class kar: urr:lsid:kepler-project org:kar: 571

BEring ko Fronk ChrHF

Send to Back ChrHE [Camimit] [Add] [Remove] [Restore Defaults] [Freferences] [Help] [Cancel

Figure 15: Configuring the Constant actor.

7. Type “Hello World” in the vallue field of the “Edit parameters for Constant”
dialog window and click Commit to save your changes. “Hello World” is a string
value. In Kepler, all string values must be surrounded by quotes. (Figure 15).

8. Inthe Components and Data Access area, search for “Display” and select the
Display actor found under “Textual Output.”

9. Drag the Display actor to the Workflow canvas.

10. Connect the output port of the Constant actor to the input port of the Display
actor.

11. Run the model (Figure 16).

K| .03-ImageDisplay.Display E]@

i
SDF Director File Tools Help

Hello World -~
Hello World

Hello World
Constant S

: . Display Hello World
'* Hello World
PI T I Hello World

Hello World

Hello World
Hello World

ks 1 . mow1a e

Figure 16: “Hello World” workflow and output.

NOTE: By default, the SDF director will continuously run a workflow, creating a
loop. To run “Hello World” a limited number of times, right-click on the SDF
Director and select “Configure Director” from the menu. Type the desired number
of iterations into the iterations field of the “Edit parameters for SDF Director”
dialog window and click the Commit button to save your changes.

6.5.2. Example 2: Creating a Simple Workflow Using Local Data

In this example, you will create a simple workflow using an actor that will read a local
data file containing information about species, extract the data from a column within that
file, and then calculate count averages for each of the species.

Kepler can read data in many ways and from many formats: In this example, we will use
an actor to review a data table. To determine which actor is appropriate, consider the

25

format in which the data are saved. In this example, the data are saved in a text format.
As such we will use the File to String Converter actor to view the data in a tabular
format. This model requires two actors: a File to String Converter actor and a Display
actor to output text. In addition, the example requires a SDF Director.

1. From the Menu bar, select File, then New Workflow, and then Blank. A new
window will open with a blank Workflow canvas.

2. Inthe Components and Data Access area, select the Components tab, and then
navigate to the “/Components/Director/” directory.

3. Drag the SDF Director to the top of the Workflow canvas.

4. Inthe Components tab, type “File to String Converter” in the Search box, then
click the Search button.

5. Drag the File to String Converter actor onto the Workflow canvas and place it a
little below the SDF Director.

6. Right-click the File to String Converter actor and select Configure Actor from the
menu. An “Edit parameters for File to String Converter” dialog window will
open.

7. Click the Browse button to the right of the ¥1 leOrURL parameter and navigate
to the following file: mollusc_abundance.txt. These data come installed in Kepler
and are located in the “/kepler/demos/getting-started/” folder.

- Edit parameters for File To String Converter
[@ Tl LIRL:
numberofLinesToSkip: 0
class: org.geon FileToString
semanticType00; urh:1sid: localhost:onto: 1: 1#Converaionkctor
semanticTypet 1: urn:lsid:localhost:onto: 2: l#LlocalInput
firingsPertteration: 1
Carnrnit] I Add l [Remave J [Restore DeFauItsI I Freferences l [Help] I Cancel I
Kl Open
Lok it :.;;p getting-started .
) “® Local Disk (C) L
£ | kepler-1 0. Obetat
I_EJ 1) demos
My Recet <
Dacumerts () getting-started
) Shared Documents
;:_ 3 =) Memory Stick (D0
s DVDICD-R Drive (E:)
Lissktap S wy Netwvork Places bl
|:| pUbIU TSI TRICATTOTT
112 ¥SLTSample

Figure 17: Configuring the File to String Converter actor to use data from your local machine.

8.

Click the Commit button at the bottom of the “Edit Parameters for File to String
Converter” dialog box. The actor is now configured to read the specified file.

26

9. Inthe Components tab, search for “Display”. Select the Display actor and drag it
onto the Workflow canvas to the right of the File to String Converter actor.

10. Connect the output port of the File to String Converter actor to the input port of
the Display actor.

11. From the Toolbar, select the Run button. A pop-up window will appear,
displaying the contents of the data file in tabular format.

12. From the Menu bar, select File, then Save. When prompted, save the newly
created workflow to the “/kepler/demos/getting-started” directory with the name
“readingdata.xml.”

SDF Director K| .03-ImageDisplay.Display E]@
File Tools Help
2000 10 28 10 1 [
2000 10 28 10 1
. . Z000 10 28 10 1
File To String Converter Z000 10 28 10 1
=" 2000 10 28 10 2
B > Display z000 10 28 10 z
— 2000 10 28 10 2
— 2000 10 28 10 z -
| W
< | [

Figure 18: Using and displaying local data in a workflow.

NOTE: When creating a workflow, remember that the limitations of the data
determine which processing components are appropriate.

7. Sample Scientific Workflows

This section examines a small set of sample scientific workflows that come standard with
Kepler and provides step-by-step instructions for creating these workflows.

7.1. Sample Workflow 1 — Simple Addition

Name Simple Addition Workflow

Filename /kepler/demos/getting-started/01-SimpleAddition.xml

Detailed This workflow adds two numbers together and displays the result. The
Description Constant actors simply produce a constant value (3 and 2) that is sent to

the Add or Subtract actor. The Add or Subtract actor calculates the
sum of the input values, and then outputs that sum through its output
port, which is connected to the Monitor Value actor. The Monitor
Value actor displays the sum, in this case the value '5'. The workflow
represents the process visually so that it is easy to understand how data
flows from one component to another.

Assumptions

The Constant actor produces humeric values

Director

SDF Director

Data

Data is generated in the Constant actor

27

Actors Constant, Add or Subtract, Monitor Value

Parameters Constantl: value=2

Constant2: value=3

The Simple Addition workflow adds two numbers together and displays the results. To
create this workflow:

1.
2.

o

~

In the Components and Data Access area, select the Components tab.

Search for the SDF Director and drag and drop the director to the Workflow
canvas. Search for the Constant actor and drag and drop that to the screen twice.
Note the second actor is named Constant2.

Configure the Constantl actor by right-clicking the actor and selecting Configure
Actor. In the “Edit Parameters for Constant” window, add 2 to the value field
and click Commit.

Configure the Constant2 actor to use 3 as the value parameter.

Search for the Add or Subtract actor, and drag and drop that to the screen.
Connect the two Constant actors to the Add or Subtract actor. To add the two
values, both the Constantl and Constant2 actor must be connected to the + (top)
input port of the Add or Subtract actor.

Search for the Monitor Value actor, and drag and drop that to the screen.
Connect the output of the Add or Subtract actor to the input of the Monitor Value
actor.

SDF Director

Constanti

Manitor Value

— ;

Figure 19: The Simple Addition workflow and its output

7.2. Sample Workflow 2 —Linear Regression
Name Simple Linear Regression workflow using R
Filename /kepler/demos/getting-started/05-LinearRegression.xml
Detailed This workflow performs a simple linear regression analysis using the

Description | RExpression actor. The workflow creates a scatter plot of the two

variables from the Datos Meteorologicos data set and adds a regression
line using the Y = a + bX equation, where X is the explanatory variable
and Y is the dependent variable. The slope of the line is b, and a is the
intercept (the value of y when x = 0).

Assumptions | A linear regression assumes linearity, independence, homoscedasticity,

and normality

28

Director SDF director

Data Datos Meteorologicos

Actors Datos Meteorologicos, RExpression, Display, ImageJ

Parameters | Datos Meteorologicos: Data Output Format = As Column Vector
SDF Director: 1terations =1;
RExpression: R function or script=

res <- Im(BARO ~ T_AIR)

res

plot(T_AIR, BARO)

abline(res);

RExpression: input ports = ‘T_AIR’ and ‘BARO.’

The Simple Linear Regression workflow runs a search for data on the EcoGrid, and the
data found is used to create a workflow conducting a linear regression. In this example,
the input data comes from two output ports (the data columns on Barometric Pressure and
Air Temperature) of the Datos Meteorologicos actor, a data set of meteorological data
from the La Hechicera station collected in 2001.

The Linear Regression workflow uses four actors (the Datos Meteorologicos actor, the
RExpression actor, the ImageJ actor and the Display actor) and the SDF Director. The
RExpression actor inserts R commands and scripts into the workflow. The RExpression
actor makes integrating the powerful data manipulation and statistical functions of R into
workflows easy. To implement the RExpression actor, R must be installed on the
computer running the Kepler application.

NOTE: If you have problems creating this workflow, a stored version comes
standard with Kepler at kepler/demos/getting-started/O5LinearRegression.xml.

To create the Simple Linear Regression workflow:

1. Select the Data tab in the Components and Data pane.

2. Click the Sources button and limit the scope of the search by unchecking “KU
Digir EcoGrid QuerylInterface” and “GEON Search QuerylInterface.” Because
Datos Meteorologicos is stored on the KNB Metacat, the data source for the
search can be limited to just those nodes on the grid.

Click Ok to confirm and store the search source changes.

Type Datos Meteorologicos in the search box and click Search.

From the search results, click the Datos Meteorologicos icon. Drag and drop the
Datos Meteorologicos actor to the Workflow canvas.

o w

29

NOTE: To find more information about the data set, right-click Datos
Meteorologicos in the Components and Data Access area and select Get Metadata.
Depending upon the amount of information entered by the provider, much valuable
metadata can be obtained. For the Datos Meteorologicos data set, use the Attribute
Name (e.g., BARO and T_AIR) to read and incorporate data into the R script. The
type of value and measurement type of each attribute help you decide which
statistical models are appropriate to run.

K. file:/C:/Documents% 20and% 20Settings /K. . furn_lsid_localhost.c96a7dff.0.0. htm =Joed
File Wiew Tools Help
Datos orologicos |~
Data Set Description I
[Identifier: ta011

Catalog System: knb

Corfi Act Ch+E : £

ervigure actar " Title: Datos Meteorologicos

Customize Name

Configure Ports Individual Mr. Rodrigo Torrens

Configure Units B

Open Actor Chrl+L Auth Systerm: knh

R Order. denyFirst

IR AL P ALLOw: [read) aublic

Set Checkpoinks

Configure Semantic Types...

Save i Library... Individual Mr. Rodrigo Torrens

Upload ta Repository

Corrvert to Class Marme: Datos Meteorologicos

Bring to Front Ctri+F ||| Description Dtos Estacion reteorologica La Hechicera para e? 2001

Send to Back Ctrl+B Al
Object Name sample.dat
Size 188860 bytes

Character Encoding: ASCII
Mumber of Header 4
Lines
Record Delimiter: 'n

feeoiat Maximum Record

Length colurnn
Simple Delimited: Field Delimeter: ,
Case Sensitive? no
Mumber Of Records 100
Attribute Column Definition Type of Measurement Measurement Missing Accuracy Accuracy
Name Lahel Value Type Domain Value Code Report Assessmel
e 4 Format MMDDMY
DATE Date of collection. 2 datetine Precision,
i i Format HH:MM v

Figure 20: ViewingMetadata

5. Right-click the Datos Meteorologicos actor and select Configure Actor. Select
“As Column Vector” from the pull-down menu beside the Data Output
Format parameter and click Commit. (The data type of the Datos
Meteorologicos actor must be set to “As Column Vector” to match the
RExpression actor)

30

Edit parameters for Datos Meteorologicos

r-\?f) EML File: Browse
Selected Ertity: Datos Météorologicos "
Data Output Format: ;As Column Yector El
File Extenzion Filter: 2= Field
recardic: Az Takle
endpoint: e Row
Az Byte Array

NaMmespace:
A= UnCompressed File Natme

A= Cache File Mame
[Comnik J [Add l A= Column Yector
Az ColumnBazed Record

Figure 21: Configuring Datos Meteorologicos

NOTE: Datos Meteorologicos has a series of output ports corresponding to the data
attribute names (e.g., BARO and T_AIR). To locate the appropriate port, mouse-
over the output ports and review the port tooltips.

Datos N;EDFDI{JQIEDS

B

BARD, bype:{double} |

»

Figure 22: Locating data ports

To finish creating the workflow, add the SDF Director and the remaining actors
(RExpression, ImageJ, Display).

7. Locate the SDF Director and drag and drop that to the Workflow canvas.

8. Configure the SDF Director by right-clicking the actor and selecting Configure
Actor. Change the number of iterationsto 1.

9. Click Commit for the changes to take effect.

10. Locate the RExpression actor and drag and drop it to the Workflow canvas. The
RExpression actor is located in the “Mathematical Operator” folder.

By default, the RExpression actor is configured with two output ports and the R script
2+2. Before you can use the RExpression actor in the Simple Linear Regression
workflow, you must add two input ports (T_AIR and BARO) and reconfigure the
RExpression script.

11. Right-click the RExpression actor and select Configure Ports.

31

12. In the “Configure ports” dialogue box, click Add twice to add two new ports.
Designate the new ports as input ports by clicking the checkbox named Input
beside each port.

13. Name the new input ports by double-clicking the blank box in the Name column.
Add the name “T_AIR” for one input and “BARQO” for the other. Click Commit
to save the changes.

Configure Ackor Chrl+E
Customize Mame
RExpres [anfi
igure Ports
Corfigure Units £ Configure ports for RExpression E]@
Open Ackor Chrl+L Marme Input | Output | Muttiport | Type Direction Show Name Hide | Units
Documentation » raphicsFilehlame | | | |+ [DEFALT] F
_ output L] V] [] DEFALULT] []
Set Checkpoints T AR] O] O] DEFALLT O] O]
Configure Semantic Types... EARO [¥]] [F] DEF&LULT] I
Save in Library, ..
Upload ko Repositary Camnit] [Apply] [Al] [Remove #4] [Help] [Cancel
Convert o Class
Bring ko Front Chrl+F
Send to Back Chrl+E

Figure 23: Adding and customizing ports

14. To configure the R script, right-click the RExpression actor and select Configure
Actor. In the “Edit parameters” dialogue box, change the value of the R
function or script from (2+2) to the following:

res <- Im(BARO ~ T_AIR)
res

plot(T_AIR, BARO)
abline(res)

The above R function tells the RExpression actor to read the Barometric Pressure
and Air Temperature data and then plot the values along with a regression line.
Click Commit to save your changes.

15. Drag and drop the text Display actor to the Workflow canvas. The Display actor
is located under “Components> Data Output > Workflow Output > Textual
Output.”

16. Connect the lower output port of the RExpression actor to the input port on the
Display actor.

17. Drag and drop the ImageJ actor to the Workflow canvas, The ImageJ actor is
located under “Components > Data Output > Workflow Output > Graphical
Output.”

Connect the upper output port of the RExpression actor to the input port of the

ImageJ actor. You are now ready to run the workflow. The resulting workflow and
graphic output are shown below.

32

SDF Director

Datos M:eorologicos R_linear_regression
B
£ 1152049686328 jpg E]@
480x480 pixels, B-hit, 225K
Lo
L
@
]
2 [/ .05 LinearRegression.Display =%
o File Tools Help
o g setwd('C: /Docunents and Settings/Eirsten') j‘»\
é jpeg(filensme = '1152049686325. jpy',width = 430, height = 430, pointsize = |

T_AIR <- c(l5.0, 13.4, 13.4, 12.4, 11.7, 11.4, 11.5, 11.5, 12.2, 17.4, 20.1
BAROD <- c(953.4, 953.8, 954.0, 954.3, 954.5, 954.7, 954.8, 954.6, 954.9, 95
rez <- 1lm(BARD ~ T_AIR)

res

952

951

Call:
1m(formula = BARO ~ T_ATR)

950

T T T Coefficients:
10 15 20 25 (Intercept) T_AIR
958.3772 -0.3244

plot{T_AIR, EARD)
ghline(res)

Figure 24: Linear Regression workflow and its output

The left-hand window in Figure 24 displays the scatter plot of Barometric pressure to Air
Temperature along with a regression line. The graph shows a strong negative relationship
between the two: as air temperature lowers, the Barometric pressure rises. The right-
hand window displays the Barometric Pressure and Air Temperature data used in the
scatter plot. Additionally, the intercept on the Y-axis (958.38 Barometric Pressure and
the slope — 0.32 for the linear regression equation y=mx+b) is displayed.

You may change the data type and the data set that is run through the workflow. When

changing the data, remember to make sure that the data meets the assumptions mentioned
in workflow table at the beginning of Section 7.2.

7.3. Sample Workflow 3 — Web Services and Data Transformation

Name Web Services and Data Transformation Workflow
Filename 06-WebServicesAndDataTransformation.xml

Detailed This workflow uses the remote genomics data service to
Description retrieve a genetic sequence for a given gene accession

33

number. The sequence is then displayed in three different
ways after appropriate transformations: first in its native
format (XML), second as a sequence of elements
extracted from the XML format, and third as an HTML
document that can be used for display on a website. The
later two operations are performed using Composite
actors that hide some of the complexity of the underlying
operations. Composite actors can be thought of as “sub-
workflows” that execute a potentially complex set of
tasks with a single actor.

Assumptions | The Web Service actor assumes that the target Web
service is RPC-based and uses primitive XML types and

arrays.
Director SDF Director
Data The data consists of an initial input gene accession

number that is specified by the String Constant actor and
an intermediate input retrieved from the remote genomics
data service.

Actors String Constant, Display, Sequence Getter Using XPath,
HTML Generator Using XSLT, Web Services,

Parameters Web Services:

wsd lUr I=http://xml.nig.ac.jp/wsdl/DDBJ.wsdl

Web Services: methodName=getXMLEntry

The Web Services and Data Transformation workflow uses the Web Service actor to
access a genomics database and return a genetic sequence from it, which is queried using
a remote genomics data service. The name of the returned genetic sequence (i.e., the gene
accession number) is passed to the Web Services actor by a String Constant actor. The
Web Service actor must be configured to access the appropriate remote server. Once
configured, the Web Service actor outputs the gene sequence obtained from the remote
server so that it can be displayed in multiple formats using three different textual Display
actors: one for XML (the format in which the results are returned by default), one for a
sequence of elements extracted from the XML, and one for an HTML document that can
be displayed on a website.

A Relation is used to “split” the data output by the Web Service actor so that it can be
shared by all of the necessary components.

The workflow uses two composite actors: Sequence Getter Using XPath and HTML
Generator Using XSLT to process the returned XML data and convert it into a sequence
of elements and an HTML file, respectively. These actors have been created for use with
this workflow using the existing Kepler actors. Sequence Getter Using XPath and HTML
Generator Using XSLT do not appear in the Components tab. To see the “insides” of the

34

composite actors, right-click the actor icon on the Workflow canvas and select Open
Actor from the menu. The composite actor will open in a new application window. See
Figure 28 for an example.

In addition, the workflow uses a fourth Display actor to display errors returned by the
remote server (e.g., server down or incorrect input).

To create the Web Services workflow:

1. Open a new Workflow canvas.

2. Drag and drop the SDF Director onto the Workflow canvas.

3. Drag and drop the String Constant actor onto the Workflow canvas.

4, Right-click the StringConstant actor and select Configure Actor. Type
AA045112 (the gene accession number) into the value field and click
Commit.

5. To change the name of the String Constant actor, right-click it and select
Customize Name. Type a new name (e.g., Gene Accession Number) into
the New name field and click Commit.

String Constant

@‘ Configure Ackar Chrl+E
Cuskarmize Name
Configure Ports Rename String Constant
Configure Units
Open Actor bt @ Mewy name: Gene Acocession Number|
Documentation] S e
Configure Semantic Types...
Save in Library...
Upload ko Re:ository
Conwvert ko Class
EBring ko Fronk Chrl+F
Send to Back Ctri+B

Figure 25: Customizing the name of an actor

Drag and drop the Web Service actor onto the Workflow canvas. Place the
actor beneath the String Constant actor. By default, the Web Service actor
has one output port for displaying runtime errors and must be configured
with a Web service URL (a wsdlUr I parameter), an appropriate method
(a methodName parameter). Once the actor has been configured with this
information, it will automatically generate the correct input and output
ports required by the Web service.

To configure the parameters required for accessing the Web service, right-
click the Web Service actor and select Configure Actor. Type
http://xml.nig.ac.jp/wsdl/DDBJ.wsdl into the wsd1Ur 1 field. In the

35

methodName field, type getXMLENntry. Click commit. The Web
Service actor ports should update automatically. You can move the ports
so that they are more conveniently located by right-clicking the actor and
selecting a desired port direction from the Configure Ports dialog box.

‘Web Senice Actor

Configure Actor Chri+E Edit parameters for Web Service Actor
Zustomize Mame e
i ?
Configure Parts Q) sl htp: il iy a0 jofresciDDEB vesdl
Configure Units methadhame: getMLEntry]
Open Actor Chri+l Lseriame:
Documentation »
password:
Configure Sermantic Types. .. hasTrigger: D
Save in Library. ..
clags: org.sdm.spa WehService
Upload to Repositary .
é Vi semanticType0l: urn;: lsid: localhost:onto: 1: 1#ebiervicedictor
anwert ko Class i
semanticTypel: urn; lsid: localhost:onto: 2: 1#ebiervice
Eiring to Fronk Chrl+F
Send to Back clrig Comriit] [Add l [Remave] [Restora Defaulks] [Preferences] [Help] [Cancel

‘Web Senice Actor

«——— Configured Web Service actor
accession| B Result

Figure 26: Configuring the Web Service actor.

8. Connect the output of the StringConstant actor (Gene Accession Number)
to the input of the Web Service actor.
9. Drag and drop four Display actors onto the Workflow canvas.

10. Position one of the Display actors beneath and to the right of the Web
Service actor. Right-click the actor and change the name to “Errors Sink.”

11. Connect the lower output port of the Web Service actor to the input port of
the “Errors Sink” Display actor.

12. Position the second Display actor to the right and slightly above the Web
Service actor. Right-click the actor and change the name to “XML Entry
Display.”

The Web Services and Data Transformation workflow uses two component actors
designed specifically for this workflow. These customized actors are not available in the
Component library, and rather than recreating them, we will save some time by copying
and pasting them from the existing workflow.

13. Open the Web Services and Data Transformation workflow (06-
WebServicesAndDataTransformation.xml). The workflow will open in a
new application window. Select the Sequence Getter Using XPath
composite actor by left-clicking it.

14. From the Edit menu, select Copy (or use the keyboard shortcut Ctrl+C).

15. Return to your in-progress workflow and paste the Sequence Getter Using
XPath actor to the right of the Web Service actor using the Paste command
available in the Edit menu or the keyboard shortcut Ctrl+V.

36

U file-IC Beaplar-1.0 i
be EE vew Workflow Took Window el

E i EPlNes =yl e " o
e Cirie] c I:
SOF Dirscior E oo
e m \'-::: { @ Using Web Services and Data Transformg 5:' ,::' cv:»: I
Delte Crben | i B i
g e e
(v A8 e BT b Loy
i@ Kepler Actor Grcclogy T ANHE1E B AL Enary Disqplay XA Eniry O
Comprams Dntrgy
D Progeel Ordokengy
@ Cuzcipane Crickogy
© stametice Ortsing

Suguarce Getor Using

HTML Generlar Lising | = Dt Outiad

Figure 27: Copying and pasting actors between workflows.

16. Copy and paste the HTML Generator Using XSLT actor from the Web
Services and Data Transformation workflow into your in-progress
workflow.

NOTE: To view the inner workings (i.e., hierarchical layers) of a composite actor,
right-click the actor and select Open Actor from the menu. The composite actor will
open in a new application window. Composite actors can be thought of as “sub-
workflows” that execute a potentially complex set of tasks with a single actor.

HTML Generator Using XSLT

ut I !
-rionfigure Actor Chrl+E

Customize Mame

Configure Ports

Configure Units XML Input XSLTActor

Open Ackor Chrl+L £l mlCut
Documentation 4

Configure Semantic Types... Remove First Line HTML Output
Save in Library... input.replaceFirst(™{?s \<WDOCTYPE.+7\\>", =)

Upload ko Repository

Convert to Class

EBring ko Front CtrI;i-F
Send to Back Chrl+E

Figure 28: Inside the HTML Generator Using XSLT composite actor.

Because the Web Services output is required by three actors, before connecting your
actors, you must add a relation to direct the output to multiple ports.

17. Add a relation by clicking the Relation icon at the far right of the Toolbar.
The relation (represented by a dark diamond icon) will appear near the
center of the Workflow canvas. (You can also add a relation with the
keyboard shortcut Ctrl-click).

37

K| Unnamed

BEx]

File Edit Wew ‘Workflow Tools Window Help

QeQIQIP @D mmdhie

Components I Data

Search-

|| Display [
e

g
Array F!-f\--
Sequer
Tied F
XV Plat
= . Scope
Sequer
Tired £
XV Soc
= @ Textusl Output
Y pispiay
=] @ Compaonent Ortology
= @ Data Cutput
= @ Workflow Output
= @ Graphical Cutput | =
ENM PCP
[esRi Shape File
@ GML Displayer
@ Image Display
= @ Textual Cutput

M

@ Browser Displa|w

Fa| I [3]

Gene Accession Number

b AAD45112

Add a relation

XML Entry Display

XML Entry of Gene

Displayd
Displayd

Sequence Getter Using XPath

Sequence String

| il i fkepler-1,0.0.., " I user

” 1) draft-getting-starte... ” % Adabe Photoshap

]u! & Gmail - Inbox (3) - M, . |®.g>>@ F3EL sz

Figure 29: Adding a relation

18.

Sequence Getter using XPath actor.

19.

Position the Relation icon between the Web Service actor and the

Connect the input port of the “XML Entry Display” Display actor to the

output of the Web Service actor. To make the connection, start from the

20.

21.

22,

23.

24,

input port of the Display actor and drag the cursor to the center of the
Relation icon.

Connect the HTML Generator Using XSLT actor and the Sequence Getter
Using XPath actor to the Relation icon as well.

Rename the third Display actor “Sequence String Display” and position it
to the right of the Sequence Getter using XPath actor.

Connect the input of the “Sequence String Display” actor to the output of
the Sequence Getter using XPath actor.

Rename the fourth Display actor “HTML Display” and position it to the
right of the HTML Generator Using XSLT actor.

Connect the input of the “HTML Display” actor to the output of the
HTML Generator Using XSLT actor.

You are now ready to run the workflow. The resulting workflow and output are shown

below.

38

K .06-UsingWebServicesAndD... [~ |(3/Ed

Fle Tools Help

SDEDIrector Using Web Services and D —
<qualifiers name=%"clone libh"-Hc
<qualifiers names\"note}">0rgan: K/ .06-UsingWebServicesAndD... (= |[0/E3

[</S0urce
< /FEATURE 3>

File Tools Help
{<5SEQUENCE>cacctygagaaacttoctycactygoan & |

Gene Accession Number

XML Entry Display BEALSE_COUNT &=%" 47 47 C=yT
SEQUENCE>cacctygagasacttotycactyyoact
/DDBIXML 3

Ihd
< 3]

Sequence Getter Using XPath Sequence Display <l

LEmmolGenel-M e wm | |2

HTML Generator Using XSLT jryy pisplay K" .06-UsingWebServicesAndD. .. g@

File Tools Hel

XML Input, HTML Cutput db 1Een __|
htul><head=<title>X5LT Sample</titled |
<form method=\"post\” action=\"http:

<h=Program: </b=Linput
[K!.06-UsingWebServicesAndD. .. E]@ <brDatabase: «/b><ingl
<beluery: </bx<input r
<INPUT TYPE=)"submich’

Errars Sink

File Tools Help

0 ERRORS.
</ forms

< /body>< /htnl>

[T >

Figure 30: The Web Services workflow

NOTE: To add an annotation to your workflow, drag-and-drop the Annotation
actor onto the Workflow canvas. Double-click the default text (“Double click to
edit”) to customize the annotation.

8. Appendix

8.1. Ptolemy Il — The Foundation of Kepler

Ptolemy 11 is a software framework for heterogeneous, concurrent modeling and design,
with a Java-based component assembly framework using a graphical interface called
Vergil. The Ptolemy Il software is a product of the Ptolemy project at the University of
California at Berkeley, a project whose goal is “the use of well-defined models of
computation that govern the interactions between components.”

As explained at the project’s website, Ptolemy I1 includes a number of domains, each of
which realizes a model of computation. It also includes a component library and a
number of support packages such as graphing, mathematics, plot, and data packages. For
more information about Ptolemy I, see http://ptolemy.eecs.berkeley.edu/index.html.

Although not originally intended for scientific workflows, Ptolemy Il provides support
for dataflow-oriented models, which is a very important characteristic of scientific
workflows. Because Ptolemy Il provides an open-source, mature platform for model
design and execution, including various models of computation, and is well documented
and easily extensible, it was chosen as the foundation for Kepler.

39

8.2. Technical Overview of Kepler

Kepler is an open-source software tool for scientists to design and execute scientific
workflows efficiently using emerging Grid-based approaches to distributed computation.
Kepler is based on the Ptolemy Il software and inherits much of its functionality, with
particular emphasis on:

e model design and execution;
synchronous dataflow computational model;
process networks computational model;
extensibility; and
polymorphism.

From a technical perspective, the Kepler software adds:
e \Web services;
e grid-based services;
e MoML (modeling markup language — an XML description of a Kepler
workflow);
e ontology based processing (under development); and
e semantic-type checking (under development).

Kepler provides access to local and remote data through Web and grid services. It
provides a component that instantiates itself to perform remote calls as if they were
running on the local machine. Kepler also offers a large library of Java-based
components to display, manipulate, and process data as it moves through execution in a
scientific workflow. Programmers can “wrap” external functionality in a Java wrapper so
that it can be added to the component library. Programmers can also create new
components using Java that can be used in Kepler.

Kepler uses a director/actor metaphor. Models of computation (directors) coordinate and
direct the execution of the components (actors) of a scientific workflow. Actors can
represent data or processing components.

Directors

A director governs the execution within a workflow or Composite actor. A composite
actor that contains a director is said to be opaque, and the execution model within the
composite actor is determined by the contained director. This director is called the local
director of a composite actor. A composite actor is also aware of the director of its
container, which is referred to as its executive director. If a composite actor lacks an
explicit local director, then the execution model for that actor is determined by its
executive director (i.e., the director of the composite in which it is contained).

Actors

40

Actors are re-useable components that execute a variety of functions and communicate
with other actors in a workflow. Actors communicate through ports. Messages
(input/output data) are encapsulated in tokens. Messages are sent through ports.

An atomic actor is an executable entity that cannot itself contain other actors. The ports
of atomic actors are constrained to be IOPorts. Derived classes may further constrain the
ports by overriding the public method newPort() to create a port of the appropriate
subclass, and the protected method _addPort() to throw an exception if its argument is a
port that is not of the appropriate subclass. In this base class, the actor does nothing in
the action methods.

A Composite actor is an aggregation of actors. It may have a local director, which is
responsible for executing the contained actors. At the top level of a hierarchy, a
composite actor (the top level Composite actor of the topology) will normally exist with a
local director, and no container. A Composite actor at a lower level of the hierarchy may
also have a local director. A Composite actor with a local director is opaque, and serves
the role of the wormhole from Ptolemy Classic. Its ports are opaque, but it can contain
actors and relations. The top-level composite actor is also associated with a manager
object that is responsible for managing any execution within the topology at a high level

Parameters

Parameters are named values that can be attached to a workflow or to individual directors
or actors. When you select the "Configure Actor” menu (or double-click on the actor) an
"Edit Parameters" dialog appears containing parameters for the actor that can be specified
by entering a value. Parameters can also be added directly to a workflow. The name and
value can be specified, and the name can then be used elsewhere in the workflow. For
example, one could create a parameter named 'Count” with a value of '10'. Then in any
actors on the workspace that need a count, one can enter the name 'Count’ rather than the
explicit value of '10". This is particularly useful when one want to change a parameter
value, as the change needs to be made in only one place.

Created parameters can be used as a secondary method for providing data to workflow
actors. They may be thought of a 'global variables'; i.e., data that does not travel through
the ports. Parameters can also be used in algebraic expressions as a way of providing
even more complex data.

Ports

A port is the interface of an entity to any number of relations. Normally, a port is
contained by an entity, although a port may exist with no container. The role of a port is
to aggregate a set of links to relations. Thus, for example, to represent a directed graph,
entities can be created with two ports, one for incoming arcs and one for outgoing arcs.
More generally, the arcs to an entity may be divided into any number of subsets, with one
port representing each subset.

A port can link to any instance of relation. Derived classes may wish to constrain links to
a subclass of relation. To do this, subclasses should override the protected method
checkLink(Relation) to throw an exception if its argument is a relation that is not of the

41

appropriate subclass. Similarly, if a subclass wishes to constrain the containers of the
port to be of a subclass of entity, they should override the protected method
checkContainer(Entity).

Relations

A relation is an object representing an interconnection between entities used to broadcast
the output from a single port to a number of places. The single port still has only one
connection to it, a connection to a relation. Relations can also be used to control the
routing of wires in the diagram. A relation is represented in the diagram by a black
diamond and can be selected by clicking the black diamond button in the toolbar.

8.3. Actor Reference

Documentation for actors and directors is located at http://www.kepler-
project.org/nightly/docResults/generatedJavadocs. Additionally, this documentation is
available within the Kepler interface. To get documentation:

1. Right-click the actor or director

2. Select Documentation

3. Then select Display.

K file:/C: fkepler-1.0.0betal/devidocume. . .neratedJavadocs/GarpPrediction. doc.xml g@
File Tools Help

Garp Prediction
(‘i GarpPrediction [(org.ecoinformatics.seek.garp.GarpPrediction)
5 Configure Actor Ctrl+E

Customize Mame

|eSeiFilanamey GarpPrediction
Configurs Ports [Evere ASCH
pULASCI)
Configure Units bt
Open Actor Chrl+L s

Documentation » Display Du:r\-lIA.SC
ctp

GARP is a computer program for predicting species locations based on warious spatial data sets of
uFil| | environment varisbles and known species locations. GARP s an acronym for Genetic Algarithm for
el Rule Set Production. GARP was originally cested by David Stockwell, The version in Kepler is hased
on ‘Desktap GARP', kttp: b ifamapper orgidesktopgarsl. The GarpPrediction actor pradicts
presenc data on & spatisl grid based on the input RuleSet (calculated by the GarpAlgorithm
actor) and the input set of environmertal layers. The input layers are described in a summary xml file

IBREE oy (*.cixl). The outputs are sther an *.asc grid file or & *.brop fils. Ether can be displayved 35 a bitmapped
Configure Semantic Types... Customize: image with predicted presencetabsence indicated by pixel valuss (2.0, color mapped when
Sawe inLibrary... Remove Customization digplayed).
Ui Bl This is & JNI-hased actor. It reguires the following: linuis: lgars.so windows: garp.di, ibexpst.di
Convert bo Class MacOSX - currently not available for the Mac (3H6/2008)
Bring to Front CrlF
Send to Back CtrB
|
Parameters
mleSetFilenameParameter This is the file name of the file cortaining the RuleSet data. |t iz usually the output of & Garpalgarithn actor.
laversetFllenameParameter This is the file name of the *.dxd file used to summarize the set of spetial data files with environimental dets for
aach pixel
outputA SCHParameter This is the fils name ta be used for the output ASCI grid file.
outputBMPRParameter Thiz i= the file name to be used for the output BMP raster file
Input Ports
rleSetFilename This iz the file name of the file cortaining the RuleSet data. it is usually the output of & GarpAlgaorithm actor.
layersetFiiename This is the file name of the *.cxl file used to summarize the set of spatial data files with environmental data for
sach pixel
outputA ST This i the file name to be used for the output ASCIl grid file |
Authar: Chiad Berkeley, Dan Higging, NCEAS, UC Sants |See Also:
Barb
gkl # Mo javadocs found
® Base class (TypedAtomicActor
® Source code
Mot uzed in any demos
[

Figure 31: Actor documentation

42

