
Kepler: An Extensible System for Design and Execution of Scientific Workflows

Ilkay Altintas1, Chad Berkley2, Efrat Jaeger1, Matthew Jones2, Bertram Ludäscher1, Steve Mock1

1San Diego Supercomputer Center (SDSC), University of California San Diego
2National Center for Ecological Analysis and Synthesis (NCEAS), University of California Santa Barbara

{berkley, jones}@nceas.ucsb.edu, {altintas, efrat, ludaesch, mock}@sdsc.edu

Abstract. We present the Kepler system for modeling and
enacting scientific workflows. Kepler is unique in that it
seamlessly combines high-level workflow design with
execution and runtime interaction, access to local and
remote data, and local and remote service invocation. We
give an overview of the system, highlight some specific
features, outline the planned (hands-on) demonstration,
and report on the implementation status and next steps.

1. Scientific Workflows and Kepler Features
Progress in science depends on the quantitative and
repeatable analysis of data from a variety of sources. Most
scientists conduct analyses and run models in several
different software and hardware environments, mentally
coordinating the export and import of data from one
environment to another. Scientific workflows can be seen
as a formalization of this ad-hoc process so that scientists
can design, execute, monitor, re-run, and communicate
analytical procedures repeatedly and with minimal effort.

Scientific workflows (short: SWFs) are superficially
similar to business process workflows but have several
challenges not present in the scenario for business
workflows [6]. For example, they often operate on large,
complex, and heterogeneous data, can be computationally
intensive, and produce complex derived data products that
may be archived for use in re-parameterized runs or other
workflows. Moreover, unlike business workflows, SWFs
are often dataflow-oriented as witnessed by a number of
recent academic systems (e.g., DiscoveryNet, Taverna,
Triana, , …) and commercial systems (Pipeline-Pilot from
Scitegic, Discovery-Station from Inforsense etc.). In a
sense, SWFs are often closer to signal-processing and
data streaming applications than they are to control-
oriented business workflow applications. We have thus
based the development of Kepler on the mature, dataflow-
oriented Ptolemy II system (short: Ptolemy) [12]. Kepler
inherits many advanced features from Ptolemy, and
numerous extensions and numerous new features have
been added recently for supporting scientific workflows:
• To the best of our knowledge, Kepler is the only

available SWF system supporting multiple, precisely
specified execution models via so-called directors
(Figure 1). Workflows can be nested arbitrarily, and
subworkflows can inherit their execution semantics
from the parent, or introduce a new local director.

• Kepler’s intuitive GUI for design and execution and
its actor-oriented modeling paradigm make it a very

versatile tool for SWF design, prototyping, execution,
and reuse for both workflow engineers and end users.

• Kepler is extensible in various ways: e.g., its web
service harvester allows the user to plug-in and
execute new system components instantaneously,
making it a powerful application integration tool. The
underlying Ptolemy system has been designed with
extensibility in mind, and new types of actors and
directors (for specialized execution semantics) can be
added to the system very easily.

• Kepler includes a number of specific extensions to
support SWF applications, e.g., a design actor for
rapid prototyping, data transformation actors (XSLT,
Perl, etc.) for linking “almost but not quite fitting”
web services together, data access and query actors,
for querying database sources and other structured
and annotated (EML) sources, a browserUI actor for
injecting user control and input, as well as output of
legacy applications anywhere in a workflow via the
user’s local web browser.

• Last not least, Kepler is a cross-project, open source
activity, with an active and growing community of
developers and users. The source code is freely
available, and so is a preliminary packaged version
for end users. The first official pre-release, Kepler
v0.8 is planned for an upcoming e-Science meeting in
May 2004 and will be distributed through the Kepler
web site [8] and a “Kepler-to-Go” CD.
.

Figure 1. Kepler workflow editor (Ptolemy’s Vergil) showing
actor libraries (left), design workspace (right), the chosen
Process Network director (green), and inline comments.

2. Design and Exchange of Workflows
Using Kepler, scientists can capture workflows in a
format that can easily be exchanged, archived, versioned,
and executed. Kepler contains libraries of reusable
modules (processing steps) called actors, which can act as
data sources, sinks (various displays), data transformers,
analytical steps (e.g., Matlab scripts), or more generally
any computation step which can be invoked as a (web)
service. An actor can have multiple input and output
ports, through which streams of data tokens enter and exit
the actor. Additionally, actors may have parameters to
define specific behavior: e.g., for a database actor, the
query to evaluate and its return type (set-at-a-time or
tuple-at-a-time), for a web service actor, the method to
execute, for a user-defined simulation or analytical model,
the initial state and parameter settings, etc. Kepler can
perform both design-time (static) and run-time (dynamic)
type checking on the workflow and data. Actors run as
local Java threads by default, but can spawn distributed
execution via web (and soon grid) services, as well as
through its foreign languages interface.

Figure 2. The design actor tool creates a prototype “stub”
actor, compiles it, and then adds it to the actor library, from
where it can be dragged onto the workspace.

Prototyping Workflows. The system allows scientists

to prototype a workflow before implementing the actual
actor code needed for workflow execution. Kepler’s
design actor can be seen as a “blank slate” which prompts
the scientist for critical information about an actor, e.g.,
the actor’s name, and the number, names, and types of its
input and output ports (Figure 2). Once the user has
prototyped an actor in this way, a corresponding stub is
compiled and added to the user’s library. The user can
then use this stub on the workflow canvas to prototype a
workflow. In particular, since stubs are typed according
to the user’s information, the system can catch static type
errors at the very early design stage. When trying to run
a prototype workflow, an invoked stub actor simply open
a dialog indicating that the workflow implementation is

incomplete. When used in this way, Kepler becomes a
convenient tool for designing, prototyping and
documenting workflows.

Workflow Documentation and Exchange. Kepler
work-flows can be exchanged in XML using Ptolemy’s
own Modeling Markup Language (MoML) [9]. Because
of this XML serialization, workflows can be easily shared
and discussed with colleagues, and the workflow
description itself be used as documentation (metadata) in
the users’ research projects. We plan to extend (or
replace, depending on standardization efforts) MoML in
the future to support workflow versioning and handling of
provenance information for derived data products. In this
way, researchers can return to previously “check-pointed”
states as needed.

3. Data Access, Querying, and Transformation
Kepler has actors to access, query, and transform data.

Database Access and Querying. An important data
source in SWFs are databases. Currently, Kepler includes
two database actors: The DBConnect actor has input
parameters for the usual connection information, e.g.,
database URL, user-name and password, and outputs a
database connection token t to be used by any down-
stream DBQuery actor that needs it. The latter takes as
input the database connection token t, an SQL query q,
and result-type parameter indicating whether q’s output
should be passed downstream as a single token (set-at-a-
time) or as a sequence of tokens (tuple-at-a-time). The
actual database communications used by DBConnect and
DBQuery are through JDBC. In the near future, we will
add additional database querying actors, e.g., schema-
aware actors that expose individual relational attributes as
output ports (similar to the EML actor described next),
and GUI-enabled actors that support query formulation in
a visual query-by-example (QBE) style.

EML-Source Actor. EML, the Ecological Metadata
Language [7] is an XML-based metadata specification for
describing ecological and biological datasets. EML
contains both physical and logical information about
datasets. The EML-Source actor (Figure 3) uses EML to
ingest (i.e., access and download) heterogeneous datasets
into Kepler based on physical and logical EML metadata
about the source to be ingested.

Figure 3. The EML-Source Actor (left) automatically
configures itself with one output port for each logical
attribute in the imported dataset (right).

Once the EML-Source actor parses the EML metadata,
it uses information from the physical metadata to read the
data file in its native format. It then uses the logical
information to create one output port for each attribute
(column) in the data file (see Figure 3). The ports are
typed like other ports in Kepler, based on information
contained in the EML metadata. At execution time, the
datasets is emitted record-at-a-time, with each port
sending the token corresponding to the port’s attribute.
The EML actor allows Kepler to ingest a multitude of
heterogeneous data (as long as it is described in EML),
making it an very flexible tool for domain scientists who
often have to deal with many data and file formats.

Data Transformation Actors. When composing
scientific workflows from individual actors and web
services into more complex analytical pipelines, often the
problem arises that two services, say A and B, cannot be
linked together although the chain of actors A B may be
completely reasonable at the conceptual level. The reason
for this is that when actors and web services are designed
in isolation, their respective data formats (A’s output and
B’s input) are often incompatible. In these cases, we can
introduce a data transformation actor DT between A and
B, i.e., (A DT B) which can transform data from A’s
output schema into a format which fits B’s input schema.
Currently Kepler includes transformation actors for a
number of languages including XSLT [21] and XQuery
[20] for XML data, and Perl for text-structured data. For
data tokens which are sent in the native Java model, the
built-in transformations actors from Ptolemy can be used.

4. Workflow Execution
Kepler can execute processes locally either within the
default Kepler environment (Java), or within another
native environment (compiled code, or code interpreted
by another environment such as Perl). In addition, the
different processes implemented by actors can be
executed in a distributed way, using web and grid
services. By default, remote service calls behave as if
they were atomic steps in the overall execution model and
thus just look like native local actors to the director which
orchestrates their execution.

Distributed Execution: Web-/Grid-Service Actors.
Kepler’s web and grid services actors allow scientists to
utilize computational resources on the net in a distributed
scientific workflow. Kepler’s generic WebService actor
provides the user with an interface to seamlessly plug-in
and execute any WSDL-defined web service [18]. The
user can instantiate the generic web service actor (Fig. 4,
left) by providing the WSDL URL and choosing the
desired web service operation. The actor then
automatically specializes itself and adds ports with the
correct inputs and outputs as given by the WSDL. The so
instantiated actor (Fig. 4, right) acts as a proxy for the
web service being executed. Similarly, a generic actor for
grid services can be specialized into specific actors for

executing remote services on the grid [12]. For
conveniently plugging in a whole set of (possibly related)
services, a web service harvester has been developed. It
can be used to instantaneously import all web services
found on a web page or in a UDDI repository [17].

Grid Actors. In addition to generic web services,
Kepler also includes specialized actors for executing jobs
on the grid, e.g., actors for certificate-based authentication
(ProxyInit), grid job submission (GlobusGridJob), and
drid-based data access (DataAccessWizard, GridFTP).
Each of these actors access specific grid-based services
using Open Grid Services Architecture (OGSA)
interfaces and the Java CoG Kit [2,12].

Other Execution Environments. Supporting foreign
language interfaces (as supposed to native Java execution)
gives the user flexibility to reuse existing analysis
components and to target appropriate computational tools.
For example, Kepler (through Ptolemy) already includes a
Matlab actor and a Python actor .

Figure 4. Instantiating a Web Service actor

We plan a to add further actors for execution of SAS,

C++, and R(S+) code.

5. System Demonstration
We will demonstrate the Kepler system using scientific
workflow examples from a number of different domains:
• Biology/Genomics: The first demonstration shows

how popular remote data sources and services such as
Genbank and BLAST from NCBI can be integrated
into a molecular biology workflow [1,4]. A version
of this workflow is currently being used to automate
a process called “Promoter Identification” and has led
to significant time savings for the user. Since this
workflow can include long-running tasks, we also use
it to demonstrate a novel notification-actor, which
can be used to send notifications to the user via
email, e.g., to a cell phone or PDA.

• Ecology: Our experience with metadata-driven data
ingestion using the EML-Source actor has shown that
generic analytical pipelines can be easily reapplied to
heterogeneous data sources without manual data
massaging by the scientist. This allows rapid
exploratory data visualization for scientists

unfamiliar with data sources. It also enables the use
of previously inaccessible data sources in complex
analytical workflows. We will demonstrate the
GARP algorithm (Genetic Algorithm for Rule set
Production) in a scientific workflow that predicts
species range distributions based on niche modeling
theory [15]. Incorporating this into Kepler has
broadened the data available, made archiving model
predictions easier, and enabled substitution of
competing prediction algorithms in the workflow, all
contributing to our ability to predict the effects of
climate change and invasive species on the
environment.

Geology: We will also demonstrate two scientific
workflows illustrating geosciences applications: The
ontology-enabled map integration (OMI) workflow
shows how different state geologic maps can be
integrated based on common integration ontologies
for classifying rock types. Another demonstration
exhibits an iterative, multi-level approach for
classifying minerals based on their chemical
composition. Both of these workflows illustrate a
novel BrowserUI actor, which can incorporate user
input and system output via a standard web browser,
in the middle of any scientific workflow.

6. Implementation Status and Next Steps
Kepler inherits many advanced features such as different
execution models (through directors), nested workflows,
the Vergil GUI etc. from the underlying Ptolemy system.
Since Ptolemy is open source and comes with an excellent
and comprehensive documentation, the Kepler team (see
[8] for the current members) was able to add numerous
novel features within a relatively short time. The
extensions are driven by actual needs as identified in
scientific application projects such as SciDAC/SDM,
SEEK, and GEON. The source code is freely available
through the project site [8], and the first official pre-
release, packaged for end users is planned for an
upcoming e-Science meeting in May. The distribution
will be (a) through the web site, and (b) via a self-
contained “Kepler-to-Go” CD that will be handed out to
the participants at the time of the conference. In
particular, we plan to let participants run the above-
mentioned demonstrations on their own laptops (several
demonstrations require internet access to invoke remote
services).

Acknowledgments.
Kepler includes contributors from SEEK [11], SDM
Center-SPA [13], Ptolemy II [10] and Geon [5]. Work
supported by NSF ITRs 022567 (SEEK), 0225673
(GEON), DOE DE-FC02-01ER25486 (SciDAC/SDM),
and DARPA F33615-00-C-1703 (Ptolemy).

References
[1] BLAST: Basic local alignment search tool,
http://www.ncbi.nlm.nih.gov/BLAST/

[2] I. Foster, C. Kesselman, J. Nick, S. Tuecke. 2002. The
Physiology of the Grid: An Open Grid Services Architecture for
Distributed Systems Integration. Open Grid Service
Infrastructure WG, Global Grid Forum, June 22, 2002.

[3] I. Foster, J. Voeckler, M. Wilde, and Y. Zhao. 2002.
Chimera: A Virtual Data System for Representing, Querying
and Automating Data Derivation. Proceedings of the 14th
Conference on Scientific and Statistical Database Management,
Edinburgh, Scotland, July 2002.

[4] Genbank: National Institute of Health Genetic Sequence
Database, http://www.ncbi.nlm.nih.gov/Genbank/

[5] GEON: Cyberinfrastructure for the Geosciences,
http://www.geongrid.org

[6] M. Greenwood, C. Wroe, R. Stevens, C. Goble and M.
Addis, Are bioinformaticians doing e-Business? Proceedings
Euroweb 2002: The Web and the GRID - from e-science to e-
business.

[7] Jones, M.B., C. Berkley, J. Bojilova, and M. Schildhauer,
2001. Managing Scientific Metadata, IEEE Internet Computing
5(5): 59-68.

[8] Kepler: An Extensible System for Scientific Workflows,
http://kepler.ecoinformatics.org

[9] E. A. Lee and S. Neuendorffer. 2000. "MoML - A Modeling
Markup Language in XML, Version 0.4," Technical
Memorandum UCB/ERL M00/12, University of California,
Berkeley, CA 94720, March 14, 2000.
http://ptolemy.eecs.berkeley.edu/publications/papers/00/moml/

[10] Ptolemy II, http://ptolemy.eecs.berkeley.edu/ptolemyII/

[11] SEEK: Science Environment for Ecological Knowledge,
http://seek.ecoinformatics.org

[12] B. Sotomayor. 2003. The Globus Toolkit 3 Programmer's
Tutorial, http://www.casa-sotomayor.net/gt3-tutorial/index.html.

[13] SPA: http://kepler.ecoinformatics.org/spa.html

[14] SQL: Structured Query Language. Chamberlin, D.D., et
al., “SEQUEL 2: a unified approach to data definition,
manipulation and control,” IBM Journal of Research and
Development 20:6, pp. 560-575, 1976.

[15] Stockwell D.R.B. and D. Peters 1999. The GARP Modeling
System: problems and solutions to automated spatial prediction.
International Journal of Geographical Information Science 13
(2): 143-158.

[16] I. Taylor, M. Shields, I. Wang and R. Philp. 2003.
Distributed P2P Computing within Triana: A Galaxy
Visualization Test Case. IPDPS 2003 Conference, April 2003.
http://www.gridlab.org/Resources/Papers/ipdsp_trianagalaxy_20
03.pdf

[17] Universal Discovery, Description and Integration of Web
Services: http://www.uddi.org

[18] Web Services Description Language (WSDL) 1.1, W3C
Note 15 March 2001, http://www.w3.org/TR/wsdl

[19] Extensible Markup Language, http://www.w3.org/XML/

[20] An XML Query Language, http://www.w3.org/TR/xquery/

[21] XSL Transformations, http://www.w3.org/TR/xsl

